留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿井下移动机器人多传感器自适应融合SLAM方法

马艾强 姚顽强

马艾强,姚顽强. 煤矿井下移动机器人多传感器自适应融合SLAM方法[J]. 工矿自动化,2024,50(5):107-117.  doi: 10.13272/j.issn.1671-251x.2024050031
引用本文: 马艾强,姚顽强. 煤矿井下移动机器人多传感器自适应融合SLAM方法[J]. 工矿自动化,2024,50(5):107-117.  doi: 10.13272/j.issn.1671-251x.2024050031
MA Aiqiang, YAO Wanqiang. Multi sensor adaptive fusion SLAM method for underground mobile robots in coal mines[J]. Journal of Mine Automation,2024,50(5):107-117.  doi: 10.13272/j.issn.1671-251x.2024050031
Citation: MA Aiqiang, YAO Wanqiang. Multi sensor adaptive fusion SLAM method for underground mobile robots in coal mines[J]. Journal of Mine Automation,2024,50(5):107-117.  doi: 10.13272/j.issn.1671-251x.2024050031

煤矿井下移动机器人多传感器自适应融合SLAM方法

doi: 10.13272/j.issn.1671-251x.2024050031
基金项目: 国家自然科学基金项目(42001417);国土资源部煤炭资源勘查与综合利用重点实验室项目(KF2021-4)。
详细信息
    作者简介:

    马艾强(1996—),男,陕西榆林人,硕士研究生,主要研究方向为煤矿机器人实时定位与建图,E-mail:aiqiang0125@163.com

  • 中图分类号: TD67

Multi sensor adaptive fusion SLAM method for underground mobile robots in coal mines

  • 摘要: 基于同时定位与建图(SLAM)技术的移动机器人能够快速、准确、自动化地采集空间数据,进行空间智能感知和环境地图构建,是实现煤矿智能化和无人化的关键。针对目前煤矿井下多传感器融合SLAM方法存在机器人前端位姿估计退化失效和后端融合精度不足的问题,提出了一种煤矿井下移动机器人激光雷达(LiDAR)−视觉−惯性(IMU)自适应融合SLAM方法。对LiDAR点云数据进行聚类分割,提取线面特征,利用IMU预积分状态进行畸变校正,采用基于自适应Gamma校正和对比度受限的自适应直方图均衡化(CLAHE)的图像增强算法处理低照度图像,再提取视觉点线特征。用IMU预积分状态为LiDAR特征匹配与视觉特征跟踪提供位姿初始值。根据LiDAR相邻帧的线面特征匹配得到移动机器人位姿,之后进行视觉点线特征跟踪,分别计算LiDAR、视觉、IMU位姿变化值,通过设定动态阈值来检测前端里程计的稳定性,自适应选取最优位姿。对不同传感器构建残差项,包括点云匹配残差、IMU预积分残差、视觉点线残差、边缘化残差。为了兼顾精度与实时性,基于滑动窗口实现激光点云特征、视觉特征、IMU测量的多源数据联合非线性优化,实现煤矿井下连续可用、精确可靠的SLAM。对图像增强前后效果进行试验验证,结果表明,基于自适应Gamma校正和CLAHE的图像增强算法能显著提升背光区和光照区的亮度和对比度,增加图像中的特征信息,大幅提升特征点提取数量和匹配质量,匹配成功率达90.7%。为验证所提方法的性能,在狭长走廊和煤矿巷道场景下进行试验验证,结果表明,所提方法在狭长走廊场景的定位均方根误差为0.15 m,构建的点云地图一致性较高;在煤矿巷道场景中的定位均方根误差为0.19 m,构建的点云地图可真实地反映煤矿井下环境。

     

  • 图  1  LiDAR−视觉−惯性融合SLAM方法原理

    Figure  1.  Principle of LiDAR-visual -inertial measurement unit (IMU) fusion simultaneous localization and mapping (SLAM) method

    图  2  煤矿井下图像增强算法

    Figure  2.  Image enhancement algorithm underground coal mine

    图  3  因子图优化

    Figure  3.  Factor graph optimization

    图  4  实验设备

    Figure  4.  Experimental equipment

    图  5  狭长走廊与煤矿巷道环境及控制点布设情况

    Figure  5.  Control points layout in narrow corridor and coal mine roadway environment

    图  6  矿井图像增强效果对比

    Figure  6.  Comparison of mine image enhancement effect

    图  7  不同方法定位轨迹对比

    Figure  7.  Comparison of positioning trajectories of different methods

    图  8  定位绝对误差

    Figure  8.  Absolute positioning errors

    图  9  IE−LVI−SAM建图效果

    Figure  9.  Mapping effect of IE-LVI-SAM

    图  10  本文方法建图效果

    Figure  10.  Mapping effect of the proposed method

    表  1  多源传感器设备型号与信息

    Table  1.   Sensors model and information

    设备 设备型号 设备信息
    LiDAR VLP−16 频率:10 Hz ;最大测量距离:150 m
    IMU Ellipse2−N 频率:200 Hz ;横滚/俯仰误差为±0.1°;航向误差为0.5°
    相机 Zed−2i 频率:30 Hz; 图像分辨率(H×V):1 280×720
    控制台 Autolabor−PC CPU:AMD Ryzen3 3 200G、DDR4 8 G
    机器人 Autolabor−Pro1 驱动模式:四驱;位移速度:0.5~1.5 m/s;旋转角速度:0.56 rad/s
    下载: 导出CSV

    表  2  特征提取与跟踪对比

    Table  2.   Features extraction and tracking comparison

    算法 特征点数量/个 匹配数量/个 匹配成功率%
    M7 M9 M7 M9 M7 M9
    原图 273 308 89 122 32.6 39.6
    Retinex算法 368 390 242 269 65.8 69.0
    自适应Gamma校正算法 330 367 250 286 75.8 77.9
    CLAHE算法 329 356 276 303 83.9 85.1
    文献[30]算法 347 374 297 331 85.6 88.5
    本文算法 365 392 331 365 90.7 93.1
    下载: 导出CSV

    表  3  定位轨迹的标准差和均方根误差

    Table  3.   Root mean squared error and standard deviation of positioning trajectory m

    误差 狭长走廊 煤矿巷道
    本文方法 IE−LVI−SAM LIO−Mapping IE−ORB−SLAM2 ORB−SLAM2 本文方法 IE−LVI−SAM LIO−Mapping IE−ORB−SLAM2 ORB−SLAM2
    STD 0.06 0.27 0.78 0.89 3.39 0.08 0.10 0.24 0.57 4.05
    RMSE 0.15 0.39 1.25 2.58 8.12 0.19 0.28 0.75 0.60 6.82
    下载: 导出CSV
  • [1] 肖琳芬. 王国法院士:煤矿智能化技术体系建设进展与煤炭产业数字化转型[J]. 高科技与产业化,2024,30(2):12-15.

    XIAO Linfen. Academician Wang Guofa:progress in the construction of intelligent technology system in coal mines and the digital transformation of coal industry[J]. High-Technology & Commercialization,2024,30(2):12-15.
    [2] 任满翊. 无人化智能煤矿建设探索与实践[J]. 工矿自动化,2022,48(增刊1):27-29.

    REN Manyi. Exploration and practice of unmanned intelligent coal mine construction[J]. Journal of Mine Automation,2022,48(S1):27-29.
    [3] KHATTAK S,NGUYEN H,MASCARICH F,et al. Complementary multi-modal sensor fusion for resilient robot pose estimation in subterranean environments[C]. International Conference on Unmanned Aircraft Systems,Athens,2020:1024-1029.
    [4] 龚云,颉昕宇. 基于同态滤波方法的煤矿井下图像增强技术研究[J]. 煤炭科学技术,2023,51(3):241-250.

    GONG Yun,JIE Xinyu. Research on coal mine underground image recognition technology based on homomorphic filtering method[J]. Coal Science and Technology,2023,51(3):241-250.
    [5] YANG Xin,LIN Xiaohu,YANG Wanqiang,et al. A robust LiDAR SLAM method for underground coal mine robot with degenerated scene compensation[J]. Remote Sensing,2022,15(1). DOI: 10.3390/RS15010186.
    [6] WU Weitong,LI Jianping,CHEN Chi,et al. AFLI-Calib:robust LiDAR-IMU extrinsic self-calibration based on adaptive frame length LiDAR odometry[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2023,199:157-181. doi: 10.1016/j.isprsjprs.2023.04.004
    [7] COLE D M,NEWMAN P M. Using laser range data for 3D SLAM in outdoor environments[C]. IEEE International Conference on Robotics and Automation,Orlando,2006:1556-1563.
    [8] LI Menggang,ZHU Hua,YOU Shaoze,et al. Efficient laser-based 3D SLAM in real time for coal mine rescue robots[C]. 8th Annual International Conference on Technology in Automation,Control,and Intelligent Systems,Tianjin,2018:971-976.
    [9] KNEIP L,WEISS S,SIEGWART R. Deterministic initialization of metric state estimation filters for loosely-coupled monocular vision-inertial systems[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,San Francisco,2011:2235-2241.
    [10] BLOESCH M,BURRI M,OMARI S,et al. Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback[J]. The International Journal of Robotics Research,2017,36(10):1053-1072. doi: 10.1177/0278364917728574
    [11] GOMEZ-OJEDA R,MORENO F A,ZUNIGA-NOëL D,et al. PL-SLAM:a stereo SLAM system through the combination of points and line segments[J]. IEEE Transactions on Robotics,2019,35(3):734-746. doi: 10.1109/TRO.2019.2899783
    [12] YANG Gaochao,WANG Qing,LIU Pengfei,et al. An improved monocular PL-SlAM method with point-line feature fusion under low-texture environment[C]. 4th International Conference on Control and Computer Vision,Macau,2021:119-125.
    [13] ZHAO Shibo,FANG Zheng,LI Haolai,et al. A robust laser-inertial odometry and mapping method for large-scale highway environments[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Macau,2019:1285-1292.
    [14] SHAN Tixiao,ENGLOT B,MEYERS D,et al. Lio-sam:tightly-coupled lidar inertial odometry via smoothing and mapping[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Las Vegas,2020:5135-5142.
    [15] ZHANG Ji,SINGH S. Visual-lidar odometry and mapping:low-drift,robust,and fast[C]. IEEE International Conference on Robotics and Automation,Seattle,2015:2174-2181.
    [16] LIU Yanqing,YANG Dongdong,LI Jiamao,et al. Stereo visual-inertial SLAM with points and lines[J]. IEEE Access,2018,6:69381-69392. doi: 10.1109/ACCESS.2018.2880689
    [17] TIAN Chengjun,LIU Haobo,LIU Zhe,et al. Research on multi-sensor fusion SLAM algorithm based on improved gmapping[J]. IEEE Access,2023,11(9):13690-13703.
    [18] SHAN Tixiao,ENGLOT B,RATTI C,et al. Lvi-sam:tightly-coupled lidar-visual-inertial odometry via smoothing and mapping[C]. IEEE International Conference on Robotics and Automation,Xi'an,2021:5692-5698.
    [19] 隋心,王思语,罗力,等. 基于点云特征的改进RANSAC地面分割算法[J]. 导航定位学报,2024,12(1):106-114l.

    SUI Xin,WANG Siyu,LUO Li,et al. Improved RANSAC ground segmentation algorithm based on point cloud features[J]. Journal of Navigation and Positioning,2024,12(1):106-114.
    [20] HUANG S C,CHENG F C,CHIU Y S. Efficient contrast enhancement using adaptive gamma correction with weighting distribution[J]. IEEE Transactions on Image Processing,2013,22(3):1032-1041. doi: 10.1109/TIP.2012.2226047
    [21] WANG Jun,WANG Rui,WU Anwen. Improved gamma correction for visual slam in low-light scenes[C]. IEEE 3rd Advanced Information Management,Communicates,Electronic and Automation Control Conference,Chongqing,2019:1159-1163.
    [22] HUANG Lidong,ZHAO Wei,WANG Jun,et al. Combination of contrast limited adaptive histogram equalisation and discrete wavelet transform for image enhancement[J]. IET Image Processing,2015,9(10):908-915. doi: 10.1049/iet-ipr.2015.0150
    [23] MESSIKOMMER N,FANG C,GEHRIG M,et al. Data-driven feature tracking for event cameras[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver,2023:5642-5651.
    [24] GIOI R G,JAKUBOWICZ J,MOREL J M,et al. LSD:a fast line segment detector with a false detection control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(4):722-732. doi: 10.1109/TPAMI.2008.300
    [25] ZHANG Lilian,KOCH R. An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency[J]. Journal of Visual Communication and Image Representation,2013,24(7):794-805. doi: 10.1016/j.jvcir.2013.05.006
    [26] LIU Zhe,SHI Dianxi,LI Ruihao,et al. PLC-VIO:visual-inertial odometry based on point-line constraints[J]. IEEE Transactions on Automation Science and Engineering,2022,19(3):1880-1897. doi: 10.1109/TASE.2021.3077026
    [27] TRIGGS B,MCLAUCHLAN P F,HARTLEY R I,et al. Bundle adjustment-a modern synthesis[C]. Vision Algorithms:Theory and Practic,1999. DOI: 10.1007/3-540-44480-7_21.
    [28] LI Ang,ZOU Danping,YU Wenxian. Robust initialization of multi-camera slam with limited view overlaps and inaccurate extrinsic calibration[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Pargue,2021:3361-3367.
    [29] FURGALE P,REHDER J,SIEGWART R. Unified temporal and spatial calibration for multi-sensor systems[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Tokyo,2013:1280-1286.
    [30] MAJEED S H,ISA N A M. Adaptive entropy index histogram equalization for poor contrast images[J]. IEEE Access,2020,9:6402-6437.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  27
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-13
  • 修回日期:  2024-05-31
  • 网络出版日期:  2024-06-13

目录

    /

    返回文章
    返回