沿空留巷采空区自动化密闭系统

聂百胜, 夏晓峰, 周皓文, 秦枫

聂百胜,夏晓峰,周皓文,等. 沿空留巷采空区自动化密闭系统[J]. 工矿自动化,2024,50(6):16-22. DOI: 10.13272/j.issn.1671-251x.2024040042
引用本文: 聂百胜,夏晓峰,周皓文,等. 沿空留巷采空区自动化密闭系统[J]. 工矿自动化,2024,50(6):16-22. DOI: 10.13272/j.issn.1671-251x.2024040042
NIE Baisheng, XIA Xiaofeng, ZHOU Haowen, et al. Automatic sealing system for goaf along gob-side entry retaining[J]. Journal of Mine Automation,2024,50(6):16-22. DOI: 10.13272/j.issn.1671-251x.2024040042
Citation: NIE Baisheng, XIA Xiaofeng, ZHOU Haowen, et al. Automatic sealing system for goaf along gob-side entry retaining[J]. Journal of Mine Automation,2024,50(6):16-22. DOI: 10.13272/j.issn.1671-251x.2024040042

沿空留巷采空区自动化密闭系统

基金项目: 国家重点研发计划项目(2022YFC3004701)。
详细信息
    作者简介:

    聂百胜(1973—),男,山西运城人,教授,博士研究生导师,博士,研究方向为煤岩瓦斯动力灾害预防理论与技术等,E-mail:bshnie@cqu.edu.cn

  • 中图分类号: TD712

Automatic sealing system for goaf along gob-side entry retaining

  • 摘要: 现有的沿空留巷采空区密闭方法大多集中于构筑密闭墙及封堵墙体裂隙,施工周期较长且反复进行,消耗大量人力成本,自动化程度低,易发生二次破坏。针对上述问题,设计了一种沿空留巷采空区自动化密闭系统。该系统以柔性密闭气囊为载体,将未充气的气囊置于采空区密闭墙和单体液压支柱之间,对气囊充气使其与沿空留巷顶底板及采空区密闭墙外侧贴合接触;智能感知矿压显现导致的巷道围岩变形,气囊随时变化形状柔性应对,即当气囊内部压力上升并超过安全泄压阀额定压力时,自动释放气囊气体缩小体积,以重新与顶底板围岩紧密贴合,达到持续密闭采空区的效果,抑制采空区危险气体泄漏。现场试验结果表明:安全泄压阀在柔性密闭气囊内部压力达到约4 kPa时正常开启,压力达到2.7 kPa左右停止泄气;柔性密闭装备感知压力变化后收缩体积以重新适应围岩形态,可长时间并持续性地密闭采空区;柔性密闭装备安装后与采空区密闭墙贴合度高,密闭墙墙体前瓦斯体积分数降低0.13%,有效抑制了瓦斯溢出。
    Abstract: The existing sealing methods for goaf along gob-side entry retaining mainly focus on building sealing walls and sealing wall cracks. The construction period is long and repeated, which consumes a lot of labor costs, has a low degree of automation, and is prone to secondary damage. In order to solve the above problems, an automatic sealing system for goaf along gob-side entry retaining has been designed. The system uses flexible sealing airbags as carriers, placing uninflated airbags between the sealing wall and individual hydraulic pillars in the goaf. The system inflates the airbags to make them in contact with the roof and floor of the goaf and the outer side of the sealing wall in the goaf. The intelligent perception of mine pressure causes deformation of the surrounding rock of the roadway, and the shape of the airbag changes flexibly at any time. That is, when the internal pressure of the airbag rises and exceeds the rated pressure of the safety relief valve, it automatically releases the airbag gas to reduce the volume. The airbag re tightly adheres to the roof and floor surrounding rock. It achieves the effect of continuous sealing of the goaf and suppresses the leakage of dangerous gases in the goaf. The on-site test results show that the safety relief valve opens normally when the internal pressure of the flexible sealing airbag reaches about 4 kPa and stops venting when it reaches about 2.7 kPa. Flexible sealing equipment can sense changes in pressure and shrink its volume to adapt to the shape of surrounding rock, allowing for long-term and sustained sealing of goaf. After the installation of flexible sealing equipment, it has a high degree of adhesion with the sealing wall in the goaf. The volume fraction of gas in front of the sealing wall is reduced by 0.13%, effectively suppressing gas overflow.
  • 随着5G、物联网、互联网、大数据、云计算、边缘计算等技术的发展和逐步成熟,智慧矿山的建设开始进入快车道。先进的信息化技术是矿山实现数字化、智能化的基础,5G低时延、大带宽和广覆盖的特点,可有效解决矿山智能化过程中面临的大量传感信息回传、远程控制等问题。然而,矿山环境与公网的5G建设部署场景存在显著差异,矿井现场设备回传的上行带宽需求显著、大带宽需求与低时延高可靠需求共存,井工矿井下无线信号衰减严重、覆盖受限等,都对智慧矿山5G建设提出了更高需求。

    近年来,业界学者聚焦矿山5G技术展开了研究。孙继平[1]系统研究了矿用5G技术特性、适用范围和智能化应用场景,提出了矿用5G的总体要求和建设方向。郑小磊等[2]研究了煤矿5G通信系统安全技术要求和检验方法,对煤矿5G安标技术的具体要求和测试方法进行了系统介绍。张立亚[3]研究了矿山场景中基于5G的可视化智能监控技术,分析了5G用于视频监控的传输需求。刘雨燕等[4]研究了5G通信对智慧矿山建设的主要支撑作用。顾义东[5]研究了5G技术在煤矿掘进工作面运输系统中的应用,提出了5G用于智能掘进的传输需求。上述成果主要针对矿用5G的宏观技术发展方向、测试方法和特定应用场景展开研究,缺乏对智慧矿山5G各类应用场景特点的全面梳理。

    本文针对智慧矿山建设的主要业务需求进行全面梳理,分析智慧矿山应用场景对通信网络的指标要求,结合矿山5G建设的环境特点,研究智慧矿山5G网络架构、智慧矿山5G关键技术及5G网络资源优化配置方法,确保5G网络对智慧矿山应用场景的全面支撑。

    智慧矿山5G主要承载传感器监测、视频监控、远程控制及自动驾驶等高等级智能化应用的信息传输。

    (1) 传感器信息回传需求。利用5G技术的广覆盖特性,对实时监测矿山井下瓦斯、温度、湿度等环境类传感器[6-8]的数据进行采集,并通过5G网络回传至地面数据中心进行实时分析。

    (2) 视频信息采集和回传需求。基于5G技术大带宽特性,对部署在井下采、掘、运及机电硐室等关键地点的视频监视数据进行采集和汇聚[9-11],并通过5G网络实时回传至地面监控中心或井下集控中心进行实时分析。

    (3) 实时控制信息交互需求。利用5G技术低时延特性,保证矿山通风、排水、电力等控制信息实时交互,以实现精准及时的控制和调整[12-14]。对部分大型设备进行智能化改造,逐步实现远程控制。

    (4) 自动驾驶信息采集和回传需求。井下无人驾驶对矿井无线网络的需求极高,5G技术为井下通信网络提供充足的带宽、低时延及精确定位能力。在正常行驶过程中,5G技术将传感器数据和视频数据进行实时回传,当自动驾驶出现问题时,能随时通过远程人工方式进行接管[15-16]

    由于矿山环境与公网的5G建设部署环境存在差异,智慧矿山5G与公网5G建设的技术要求存在明显不同,具体体现在以下3个方面:

    (1) 系统架构方面。《煤矿5G通信系统安全技术要求(试行)》规定,5G系统应能实现独立组网、独立运行,在外部网络故障或断开时,系统应能安全、独立、稳定运行,保证无线通信及数据传输可靠、稳定;应满足井上下安全隔离的相关规定。需要有针对性地构建矿山5G专用系统架构。

    (2) 设备接入特点方面。矿井传感器、视频监控设备部署的覆盖面广、设备数量多、传输数据量大,导致矿井上行传输速率需求显著、上行无线传输资源需求高于下行无线传输资源需求,而公众电信网络则以下行传输为主。因此,针对矿山环境5G应用,需要研究上行传输能力增强技术。

    (3) 传输业务需求方面。智慧矿山5G承载的业务类型多,上行传输的大带宽需求和下行传输的低时延需求共存,多业务并行传输需要同时满足不同业务、不同链路的差异化传输需求,对承载网和无线网的网络调度能力均提出更高要求。

    矿山5G网络架构采用核心网+承载网+接入网的总体架构,如图1所示。

    图  1  矿山5G网络架构
    Figure  1.  Mine 5G network architecture

    矿山5G核心网利用专网通信平台进行用户数据计算和管理,将用户面功能(User Plane Function,UPF)单元和多接入边缘计算(Multi-acess Edge Computing,MEC)单元下沉至矿区,实现矿山5G独立组网、独立运行功能,并支持低时延传输。核心网的业务管理功能(Service Management Function,SMF)用于实现传输业务管理。核心网通过与承载网的智能传输网(Smart Transport Network,STN)设备对接,控制数据在内网/外网的流向。矿山5G终端在5G网络注册后,核心网根据接入点的数据网络名称(Data Network Name,DNN)和无线基站归属,确定下沉的UPF,用户面数据经过基站和STN设备,之后回传到下沉的UPF,进而通往矿山数据中心的防火墙,再接入内网。矿山5G 承载网用于实现井上下数据交换,其核心交换机设备集成信息安全模块进行数据安全审计监测和传输控制,实现井上下数据安全隔离;承载网的STN设备采用网络切片和QoS(Quality of Service,服务质量)管理模块,对不同业务进行信道划分和隔离,实现多业务共存信道隔离,保障传输性能。矿山5G接入网采用基站控制器+基站汇集器+基站+终端的方式,实现井下5G信号分区、按需覆盖。基站与终端之间的空中接口通过载波聚合技术为上行大带宽传输提供更多资源。针对不同传输需求指标,采用不同的空口资源调度机制,同时保障下行低时延传输和上行大带宽传输性能。

    为满足矿山5G的多样化应用场景、上行大带宽传输和增强覆盖需求,对网络切片及QoS机制、灵活空口资源调度机制和载波聚合等关键技术进行研究,支持矿山5G有效应用。矿用5G关键技术及承载应用的关系见表1

    表  1  矿用5G关键技术与承载应用的关系
    Table  1.  Relationship between key technologies and carrying application of mine 5G
    关键技术传感器类
    应用
    视频类
    应用
    实时控制类
    应用
    自动驾驶类
    应用
    网络切片及
    QoS机制
    支撑技术支撑技术支撑技术支撑技术
    灵活空口资源
    调度机制
    基于配置预
    留资源承载
    基于请求调
    度方式承载
    基于配置预
    留资源承载
    基于请求调
    度方式承载
    载波聚合支撑技术
    下载: 导出CSV 
    | 显示表格

    网络切片技术及QoS机制是5G 承载网关键技术,共同实现在同一网络中不同业务数据需求。QoS机制为不同业务定义具体的传输参数指标。网络切片技术是将同一物理网络系统划分为不同的逻辑单元,多个逻辑单元独立组成虚拟网络,即网络切片。每个网络切片都可被视为一个独立的网络,能够承载对应的QoS指标。当传输具体业务时, 网络切片按照传输业务的QoS指标,将业务数据映射到不同的切片资源上进行传输,按照不同业务需求进行资源配置。根据对矿山业务的需求分析,将矿山5G网络划分为传感器切片、视频回传类切片、实时控制类切片、远程控制类切片4种。传感器切片对应瓦斯、温度、湿度等环境传感器,属于小带宽、广覆盖通用切片。视频回传类切片对应矿区、园区、巷道、工作面等视频监控信息回传场景,属于大带宽通用切片。实时控制类切片对应通风、排水、机电控制及其他实时控制类场景,属于低时延、小带宽切片。远程控制类切片对应自动驾驶、远程驾驶、远程控制类场景,属于大带宽、低时延切片。其中,低时延切片的数据必须通过下沉UPF,从而保障信息传送和控制时延。对于非低时延类切片,可通过公网回传至园区数据中心。对于各类切片的具体实现,需要在承载网中设计网络切片和QoS指标管理模块,实现切片资源与QoS指标映射,保障业务传输性能。

    针对接入网空口无线传输需求,设计灵活的空口资源调度机制。灵活的空口资源调度机制能够根据不同业务传输数据包的特点,灵活使用不同的空口资源调度方法,确保矿山5G多样化业务传输需求得到全面满足。

    根据典型业务传输的数据包特点,大带宽业务以大包传输为主,时延要求不高,适合采用资源请求−业务缓存报告资源分配−业务缓存−数据传输资源分配的空口资源调度方式,该方式流程较为复杂,但能够实现空口资源按需调度,保证带宽。而低时延高可靠业务则主要传输控制类信息,数据包以小包为主,数据量较小但时延要求极高,适合采用无线资源块资源预留方式,即针对低时延业务(如矿山远程控制类切片和实时控制类业务),直接采用预留的专用空口资源(如30%的空口资源)进行传输,达到降低时延的效果。

    由于矿山业务的种类和需求较多,且存在大量的视频类大带宽数据需要上传,当单一频段无法满足上行传输需求时,通过载波聚合技术,将多个连续或非连续的载波聚合成更大的带宽,为矿用5G传输引入更多的传输资源,有效支撑矿山5G的大带宽传输需求。

    3.5 GHz频段是目前全球5G部署的主流频段,单载波最大带宽为100 MHz,能够提供较高的传输速率。但智慧矿山5G应用场景对上行传输带宽需求显著,3.5 GHz单频段难以确保传输需求得到全面满足。采用载波聚合技术可在使用3.5 GHz载波进行传输的同时,额外聚合2.1 GHz的载波(载波带宽可为20,50 MHz),从而拥有更多传输资源,同时根据频率越低则覆盖距离越大的基本原理,可实现增强覆盖。载波聚合技术下2.1,3.5 GHz频段的主要配置参数见表2表3

    表  2  载波聚合频段上行主要配置参数
    Table  2.  Main uplink configuration parameters of the carrier aggregation frequency band
    参数2.1 GHz3.5 GHz
    信道带宽/MHz2050100
    时隙配置FDDFDD23∶45(按需配置)
    基站噪声系数/dB2.52.53.5
    上行干扰余量/dB332
    穿透损耗/dB202023.4
    边缘覆盖率/%757575
    传播模型3GPP UMa3GPP UMa3GPP UMa
    下载: 导出CSV 
    | 显示表格
    表  3  载波聚合频段下行主要配置参数
    Table  3.  Main downlink configuration parameters of the carrier aggregation frequency band
    参数2.1 GHz3.5 GHz
    信道带宽/MHz2050100
    时隙配置FDDFDD23∶45(按需配置)
    终端噪声系数/dB777
    终端接收增益003
    下行干扰余量/dB755
    穿透损耗/dB202023.4
    边缘覆盖率/%757575
    传播模型3GPP UMa3GPP UMa3GPP UMa
    下载: 导出CSV 
    | 显示表格

    载波聚合终端支持主载波(3.5 GHz)和辅载波,基站通过配置主载波上的MAC(Media Access Control,媒体接入控制层)和RRC(Radio Resource Control,无线资源控制层)参数,实现SCell(Secondary Cell,辅小区)状态配置,从而实现辅载波激活或释放。SCell的状态包含SCell配置未激活、SCell 配置且激活、SCell 未配置3种状态。终端初始接入、切换入或重建入小区时会触发SCell的配置,如果需要使用辅载波,则申请激活SCell,进入配置且激活状态,否则SCell处于配置未激活状态。当不再需要SCell或测量到信号质量更好的SCell,则申请激活当前的SCell,从而释放辅载波或变更到信号质量更好的辅载波。SCell状态转移如图2所示。

    图  2  载波聚合机制SCell状态转换
    Figure  2.  Secondary cell state transition in carrier aggregation mechanism

    (1) 归纳了智慧矿山5G应用场景类型,梳理了主要应用场景的通信需求,指出传感器信息回传类应用具有广覆盖需求、视频信息采集和回传类应用具有上行大带宽传输需求、实时控制信息交互类应用具有下行低时延传输需求、自动驾驶信息采集和回传类应用具有上行大带宽和下行低时延共存的差异化传输需求。

    (2) 分析了智慧矿山5G应用的环境特点和技术要求,提出了核心网+承接网+接入网的矿用5G网络总体架构。该5G网络总体架构的核心网通过UPF和MEC下沉,支持矿山5G需要独立组网、独立运行的建设要求,井下部署基站控制器+基站汇集器+基站+终端,实现5G信号分区、按需覆盖。

    (3) 研究了矿山5G关键技术方案。① 网络切片与QoS机制,能够实现传输网不同应用的按需资源分配,满足差异化传输需求。② 灵活的空口资源调度机制能够根据不同业务传输数据包的特点,灵活使用不同的空口资源调度方法,确保矿山5G多样化业务传输需求得到全面满足。③ 载波聚合技术可在单一频段无法满足上行传输需求时,将多个连续或非连续的载波聚合成更大的带宽,为矿用5G传输引入更多的传输资源,有效支撑矿山5G的大带宽传输需求。

  • 图  1   沿空留巷采空区自动化密闭系统原理

    Figure  1.   Principle of automatic sealing system for goaf along gob-side entry retaining

    图  2   沿空留巷采空区自动化密闭系统连接方式

    Figure  2.   Connection of automatic sealing system for goaf along gob-side entry retaining

    图  3   沿空留巷采空区自动化密闭系统自适应压力释放原理

    Figure  3.   Adaptive pressure release principle of automatic sealing system for goaf along gob-side entry retaining

    图  4   单个柔性密闭气囊充气密闭试验系统连接

    Figure  4.   Connection of single flexible airbag inflatable airtight test system

    图  5   沿空留巷不同高度处柔性密闭气囊压力随时间的变化

    Figure  5.   The change of flexible airbag pressure with time at different heights of gob-side entry retaining

    图  6   多个柔性密闭气囊持续充气密闭试验系统连接

    Figure  6.   Connection of multiple flexible airbags inflatable airtight test system

    图  7   柔性密闭气囊持续充气时压力变化曲线

    Figure  7.   Pressure change curve of flexible airbag with continuous inflation

    图  8   柔性密闭后密闭墙墙体前瓦斯体积分数变化

    Figure  8.   Gas volume fraction change in front of sealing wall after flexible sealing

  • [1] 何满潮,陈上元,郭志飚,等. 切顶卸压沿空留巷围岩结构控制及其工程应用[J]. 中国矿业大学学报,2017,46(5):959-969.

    HE Manchao,CHEN Shangyuan,GUO Zhibiao,et al. Control of surrounding rock structure for gob-side entry retaining by cutting roof to release pressure and its engineering application[J]. Journal of China University of Mining & Technology,2017,46(5):959-969.

    [2] 王炯,刘鹏,姜健,等. 切顶卸压沿空留巷回采工作面Y型通风漏风规律研究[J]. 采矿与安全工程学报,2021,38(3):625-633.

    WANG Jiong,LIU Peng,JIANG Jian,et al. Y-shaped ventilation air leakage law of working face of gob-side entry retaining by cutting roof to release pressure[J]. Journal of Mining & Safety Engineering,2021,38(3):625-633.

    [3] 任卓鑫. 中村煤矿切顶沿空留巷关键技术及应用研究[D]. 徐州:中国矿业大学,2023.

    REN Zhuoxin. Key technology and application of gob-side entry retaining in Zhongcun coal mine[D]. Xuzhou:China University of Mining and Technology,2023.

    [4] 田晓龙. 新景矿工作面巷旁充填沿空留巷支护技术应用[J]. 江西煤炭科技,2022(4):28-30. DOI: 10.3969/j.issn.1006-2572.2022.04.010

    TIAN Xiaolong. Application of support technology of roadside packing on gob-side entry retaining in Xinjing colliery[J]. Jiangxi Coal Science & Technology,2022(4):28-30. DOI: 10.3969/j.issn.1006-2572.2022.04.010

    [5] 尚旭. 分层充填开采煤层瓦斯渗流及涌出规律研究[D]. 阜新:辽宁工程技术大学,2022.

    SHANG Xu. Study on gas seepage and emission law of coal seam in layered filling mining[D]. Fuxin:Liaoning Technical University,2022.

    [6] 李万捷,申迎华. 煤矿井下用聚氨酯密闭材料的性能研究[J]. 煤炭转化,2003,26(4):76-78.

    LI Wanjie,SHEN Yinghua. Study on properties of polyurethane as seal material under coal mine[J]. Coal Conversion,2003,26(4):76-78.

    [7] 董光林. 矿井密闭墙新型填充材料研究[J]. 煤炭技术,2018,37(8):53-54.

    DONG Guanglin. Research on new filling material of mine closed wall[J]. Coal Technology,2018,37(8):53-54.

    [8] 于维雨,王继勇,郭建明,等. 新型无机发泡充填材料的研究及应用[J]. 中国煤炭,2018,44(3):143-146. DOI: 10.3969/j.issn.1006-530X.2018.03.029

    YU Weiyu,WANG Jiyong,GUO Jianming,et al. Research and application of new inorganic foaming filling material[J]. China Coal,2018,44(3):143-146. DOI: 10.3969/j.issn.1006-530X.2018.03.029

    [9] 易欣,康付如,邓军,等. 矿用无机固化泡沫充填材料研究及应用[J]. 中国安全生产科学技术,2017,13(10):136-142.

    YI Xin,KANG Furu,DENG Jun,et al. Research and application on inorganic solidified foam filling material for mine[J]. Journal of Safety Science and Technology,2017,13(10):136-142.

    [10] 柏建彪,张自政,王襄禹,等. 高水材料充填沿空留巷应力控制与围岩强化机理及应用[J]. 煤炭科学技术,2022,50(6):16-28.

    BAI Jianbiao,ZHANG Zizheng,WANG Xiangyu,et al. Stress control and surrounding rock strengthening mechanism of gob-side entry retaining with high-water content material filling and its application[J]. Coal Science and Technology,2022,50(6):16-28.

    [11] 张农,魏群,吴建生. 煤矿巷道喷涂柔膜技术及适用性[J]. 煤炭科学技术,2022,50(1):78-85. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201006

    ZHANG Nong,WEI Qun,WU Jiansheng. Spray-on membrane technology and its applicability in coal mine roadways[J]. Coal Science and Technology,2022,50(1):78-85. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201006

    [12]

    YILMAZ H. Tensile strength testing of thin spray-on liner products (TSLs) and shotcrete[J]. Journal of the South African Institute of Mining & Metallurgy,2010,110(10):559-569.

    [13]

    STACEY T R. Review of membrane support mechanisms,loading mechanisms,desired membrane performance,and appropriate test methods[J]. Journal of the South African Institute of Mining & Metallurgy,2001,101(7):343-351.

    [14]

    DUBE J. Investigations into the mechanisms of rock support provided by sprayed liners[D]. Johannesburg:University of Witwatersrand,2009.

    [15] 张进波. 巷旁高水材料柔模墙隔离采空区瓦斯治理技术研究与应用[J]. 煤矿现代化,2024,33(1):48-51. DOI: 10.3969/j.issn.1009-0797.2024.01.012

    ZHANG Jinbo. Research and application of gas control technology in isolated goaf area of soft mold wall of high water material beside the roadway[J]. Coal Mine Modernization,2024,33(1):48-51. DOI: 10.3969/j.issn.1009-0797.2024.01.012

    [16] 梁旭,张建忠,陈真,等. 综采工作面顺槽联巷快速密闭技术研究与应用[J]. 煤炭技术,2023,42(2):66-70.

    LIANG Xu,ZHANG Jianzhong,CHEN Zhen,et al. Research and application of rapid sealing technology of roadway crosscut in fully mechanized mining face[J]. Coal Technology,2023,42(2):66-70.

    [17] 董山,明世祥,刘鹏博. 新型喷涂速效支护技术及其作用原理的探讨[J]. 金属矿山,2010(11):56-59,160.

    DONG Shan,MING Shixiang,LIU Pengbo. Study on the new spray coating fast-acting supporting technology and its mechanism[J]. Metal Mine,2010(11):56-59,160.

    [18] 张少波,吴建生,魏群,等. 煤矿薄喷技术的理论与实践[J]. 煤炭科学技术,2017,45(4):1-7.

    ZHANG Shaobo,WU Jiansheng,WEI Qun,et al. Theory and practices on thin sprag-on technology of coal mine[J]. Coal Science and Technology,2017,45(4):1-7.

    [19] 李学彬,杨春满,王波,等. 西部弱胶结软岩巷道新型聚合物喷层支护研究[J]. 煤炭科学技术,2017,45(12):76-80.

    LI Xuebin,YANG Chunman,WANG Bo,et al. Study on new polymer spraying support of mine roadway with weak cemented soft rock in West China[J]. Coal Science and Technology,2017,45(12):76-80.

    [20] 邸馗,茅献彪,巩百川. 沿空巷道柔模支护方案优化设计及工程实践[J]. 煤炭技术,2018,37(1):19-22.

    DI Kui,MAO Xianbiao,GONG Baichuan. Optimization design of soft mode support plan and engineering practice in gob-side entry retaining[J]. Coal Technology,2018,37(1):19-22.

    [21] 刘华锋,王正辉. 新材料注浆加固封堵永久密闭墙技术的应用[J]. 矿业安全与环保,2013,40(4):87-90.

    LIU Huafeng,WANG Zhenghui. Technology of applying new material grouting to reinforce and block permanent closed wall[J]. Mining Safety & Environmental Protection,2013,40(4):87-90.

  • 期刊类型引用(14)

    1. 刘通,但德东,陈大明. 5G+智慧矿山应用中的高可靠性保障. 邮电设计技术. 2025(02): 83-87 . 百度学术
    2. 蔡勇,王晓彬,姚梦珂,戴鹏. 5G网络能力提升方案研究与应用. 无线互联科技. 2024(09): 106-110 . 百度学术
    3. 张绍斌. 矿用5G综合基站设计及应用. 工矿自动化. 2024(S1): 57-60 . 本站查看
    4. 张科学,张立亚,李晨鑫,魏春贤,高鹏. 基于5G的电液控设备邻架控制方法. 工矿自动化. 2024(S1): 165-168 . 本站查看
    5. 黎一冰,韩文成,何义华,谢晓斌. 露天矿山5G立体覆盖波束的场景化研究与实践. 中国矿业. 2024(S2): 139-144 . 百度学术
    6. 黎一冰,韩文成,王仁福,卿启林,车长路. 露天矿山5G全连接智能采矿无线网络设计及应用. 中国矿业. 2024(S2): 127-132 . 百度学术
    7. 邢震,韩安,陈晓晶,陈海舰,沈毅. 基于工业互联网的智能矿山灾害数字孪生研究. 工矿自动化. 2023(02): 23-30+55 . 本站查看
    8. 牛克洪,牛天勇,刘名宇. 基于创新趋势研判方法的煤炭产业发展走势研究. 中国煤炭. 2023(03): 11-15 . 百度学术
    9. 李晨鑫. 矿用5G通信演进技术研究. 工矿自动化. 2023(03): 6-12 . 本站查看
    10. 武熙,李珂,孟庆灵,赵佳伟. 矿用带式输送机头部智能清扫器研究与设计. 金属矿山. 2023(08): 253-259 . 百度学术
    11. 李新,葛祥吉,刘更庆,李仕宾. 基于5G+技术的智慧化矿山建设研究. 内蒙古煤炭经济. 2023(13): 127-129 . 百度学术
    12. 杨志华,李娜,高天. 井工矿5G专网无线覆盖方案研究. 邮电设计技术. 2023(09): 10-14 . 百度学术
    13. 王耀. 基于5G工业互联网的井工煤矿信息化技术研究. 工矿自动化. 2023(S1): 29-31 . 本站查看
    14. 李强,钟仕军,赖亚寒,宋仕斌. 基于多频融合5G专网的智慧矿山安全管理研究. 现代计算机. 2023(21): 30-35 . 百度学术

    其他类型引用(4)

图(8)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  42
  • PDF下载量:  162
  • 被引次数: 18
出版历程
  • 收稿日期:  2024-04-12
  • 修回日期:  2024-06-27
  • 网络出版日期:  2024-07-03
  • 刊出日期:  2024-06-29

目录

/

返回文章
返回