Abstract:
In actual production, the cutting and crushing process is the result of multi action coupling. The bidirectional coupling technology of discrete element method (DEM) and multi bodydynamics (MBD) can achieve information exchange between coal mining equipment and coal wall. It is in line with actual production situations and has significant advantages. In order to improve the working performance of the shearer drum, based on the DEM-MBD bidirectional coupling mechanism, combined with mechanical performance experiments and simulation experiments to obtain actual operating parameters, a bidirectional coupling model of the shearer drum cutting coal wall is established using simulation software EDEM and RecurDyn. The torque and cutting force experienced by the drum during the simulation process are analyzed, and it is proved that the coupling effect and cutting effect are good. Single factor experiments and orthogonal experiments are designed to analyze the influence of drum operating parameters on working performance. SPSS software is used to obtain the degree of influence of drum speed, cutting depth, and traction speed on cutting specific energy consumption, coal loading rate, and load fluctuation coefficient. The feasibility of the model is verified through on-site experiments. A multi-objective optimization model is constructed with drum speed, cutting depth, and traction speed as decision variables, and cutting specific energy consumption, coal loading rate, and load fluctuation coefficient as objectives. The improved multi-objective gray wolf optimization (MOGWO) algorithm and technique for order preference by similarity to ideal solution (TOPSIS) method are used to solve the model. It is found that when the drum speed is 31.12 r/min, the cutting depth is 639.4 mm, and the traction speed is 5.58 m/min, the working performance of the shearer drum is optimal. At this time, the cutting specific energy consumption is 0.467 7 kW·h/m
3, the coal loading rate is 43.01%, and the load fluctuation coefficient is 0.327 8.