Multi step prediction of dense medium clean coal ash content based on time series alignment and TCNformer
-
摘要: 由于在重介分选过程中各个传感器位置不同,导致重介分选主要工艺参数与灰分存在时间滞后,影响了精煤灰分结果。基于回归模型的灰分预测方法缺乏对时间序列信息的利用,无法捕捉重介生产过程随时间变化的动态特性;基于时间序列的灰分预测方法未能充分考虑灰分和重介分选主要工艺参数之间的时间依赖关系。针对上述问题,提出了一种基于时间序列对齐和TCNformer的重介精煤灰分多步预测方法。通过滞后相关性分析来量化灰分与重介分选主要工艺参数之间的滞后步长,依此对重介分选主要工艺参数在时间维度上进行移动,使得灰分和重介分选主要工艺参数时间序列对齐,消除灰分和重介分选主要工艺参数之间的时间滞后。在Transformer模型的基础上,引入时间卷积网络(TCN)提取特征,并将单向编码器扩展为双向编码器,构建了TCNformer模型来实现精煤灰分多步预测。将时间序列对齐得到的与未来时刻灰分数据对应的过程变量序列作为解码器的输入,以提升模型预测精度。实验结果表明:该方法的平均绝对误差为0.157 9%,均方根误差为0.215 2%,平均皮尔逊相关系数为0.505 1,能有效提升精煤灰分预测精度。Abstract: Due to the different positions of various sensors during the dense medium separation process, there is a time lag between the main process parameters of dense medium separation and ash content, which affects the results of clean coal ash content. The grey prediction method based on regression models lacks the utilization of time series information and cannot capture the dynamic features of the dense medium production process over time. The time series based ash prediction method fails to fully consider the time dependence relationship between the main process parameters of ash content and dense medium separation. In order to solve the above problems, a multi step prediction method for dense medium clean coal ash content based on time series alignment and TCNformer is proposed. The method quantifies the lag step between the main process parameters of ash content and dense medium separation through lag correlation analysis. The method moves the main process parameters of dense medium separation in the time dimension accordingly, aligning the time series of the main process parameters of ash content and dense medium separation, and eliminating the time lag between the main process parameters of ash content and dense medium separation. On the basis of the Transformer model, a time convolutional network (TCN) is introduced to extract features, and the unidirectional encoder is extended to a bidirectional encoder to construct the TCNformer model for multi-step prediction of clean coal ash content. The sequence of process variables corresponding to the grey data at future moments obtained from the time series alignment is used as an input to the decoder to improve the model prediction precision. The experimental results show that the average absolute error of this method is 0.157 9%, the root mean square error is 0.215 2%, and the average Pearson correlation coefficient is 0.505 1, which can effectively improve the precision of predicting clean coal ash content.
-
-
表 1 重介分选主要工艺参数
Table 1 Main process parameters of dense medium separation
类型 来源 名称 过程变量 主选系统压力变送器 主选系统重介旋流器入料压力 主选系统压差式密度计 主选系统悬浮液密度 主选系统磁性物含量仪 主选系统磁性物含量 主选系统合格介质桶液位计 主选系统合格介质桶液位 再选系统压力变送器 再选系统重介旋流器入料压力 再选系统压差式密度计 再选系统悬浮液密度 再选系统磁性物含量仪 再选系统磁性物含量 指标变量 多元素煤质分析仪 灰分 铝含量 硅含量 钛含量 钾含量 硫分 水分 表 2 消融实验结果
Table 2 Ablation experiments results
预测方法 时间序列对齐 输入未来时刻灰分对应过程变量数据 TCN模块 双向编码器 MAE/% RMSE/% r Transformer × × × × 0.2028 0.2715 0.2633 Transformer+TCN × × √ × 0.1808 0.2425 0.3830 TCNformer × × √ √ 0.1701 0.2304 0.4536 TCNformer+时间序列对齐 √ × √ √ 0.1753 0.2416 0.3925 本文方法 √ √ √ √ 0.1579 0.2152 0.5051 -
[1] 王然风,高建川,付翔. 智能化选煤厂架构及关键技术[J]. 工矿自动化,2019,45(7):28-32. WANG Ranfeng,GAO Jianchuan,FU Xiang. Framework and key technologies of intelligent coal preparation plant[J]. Industry and Mine Automation,2019,45(7):28-32.
[2] 张娟莉,康文泽,张相国,等. 桃山选煤厂精煤灰分预测的探讨[J]. 洁净煤技术,2007,13(4):15-17. ZHANG Juanli,KANG Wenze,ZHANG Xiangguo,et al. Explore of clean coal ash content predicting of Taoshan Coal Washery[J]. Clean Coal Technology,2007,13(4):15-17.
[3] 孔利利. 基于精煤灰分预测的重介悬浮液密度自动设定系统设计[J]. 选煤技术,2015(4):68-71. KONG Lili. The design of dense medium suspension density setting system based on clean coal ash prediction[J]. Coal Preparation Technology,2015(4):68-71.
[4] 张月飞,王伟,代伟. 重介分选过程产品指标在线预测方法研究[J]. 煤炭工程,2021,53(增刊1):108-111. ZHANG Yuefei,WANG Wei,DAI Wei. On-line prediction of product indicators in dense medium coal separation[J]. Coal Engineering,2021,53(S1):108-111.
[5] 李哲,孟巧荣,王然风,等. 基于EMD−RF算法的重介精煤灰分预测研究[J]. 煤炭工程,2023,55(10):174-179. LI Zhe,MENG Qiaorong,WANG Ranfeng,et al. Predictive modeling of heavy refined coal ash based on EMD-RF algorithm[J]. Coal Engineering,2023,55(10):174-179.
[6] 程凯,王然风,付翔. 基于EMD−LSTM的重介分选精煤灰分时间序列预测方法研究[J]. 煤炭工程,2022,54(2):133-139. CHENG Kai,WANG Ranfeng,FU Xiang. Time series prediction method of clean coal ash content in dense medium separation based on EMD-LSTM[J]. Coal Engineering,2022,54(2):133-139.
[7] YIN Xianhui,NIU Zhanwen,HE Zhen,et al. Ensemble deep learning based semi-supervised soft sensor modeling method and its application on quality prediction for coal preparation process[J]. Advanced Engineering Informatics,2020,46. DOI: 10.1016/j.aei.2020.101136.
[8] ZHOU Chunxia,SUN Xiaolu,SHEN Yingsong,et al. Product quality prediction in dense medium coal preparation process based on recurrent neural network[J]. International Journal of Coal Preparation and Utilization,2024,44(3):291-308. DOI: 10.1080/19392699.2023.2190098
[9] 付建新,曹师,宋卫东,等. 考虑初始缺陷的超高矿柱蠕变分析及失稳滞后时间研究[J]. 中国矿业大学学报,2017,46(2):279-284. FU Jianxin,CAO Shi,SONG Weidong,et al. Creep analysis and delay time of instability of ultrahigh pillar considering initial imperfections[J]. Journal of China University of Mining & Technology,2017,46(2):279-284.
[10] YOU Yalei,MENG Huan,DONG Jun,et al. Time-lag correlation between passive microwave measurements and surface precipitation and its impact on precipitation retrieval evaluation[J]. Geophysical Research Letters,2019,46(14):8415-8423. DOI: 10.1029/2019GL083426
[11] EVTUSHEVSKY O M,KRAVCHENKO V O,HOOD L L,et al. Teleconnection between the central tropical Pacific and the Antarctic stratosphere:spatial patterns and time lags[J]. Climate Dynamics,2015,44(7/8):1841-1855.
[12] CHEN Jing,DING Ruilian,LIU Kangkang,et al. Collaboration between meteorology and public health:predicting the dengue epidemic in Guangzhou,China,by meteorological parameters[J]. Frontiers in Cellular and Infection Microbiology,2022,12. DOI: 10.3389/fcimb.2022.881745.
[13] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[J]. Advances in Neural Information Processing Systems,2017,30:5998-6008.
[14] DEVLIN J,CHANG Mingwei,LEE K,et al. BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-08-22]. https://arxiv.org/abs/1810.04805.
[15] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al. An image is worth 16×16 words:transformers for image recognition at scale[EB/OL]. [2023-08-22]. https://arxiv.org/abs/2010.11929.
[16] BAI Shaojie,KOLTER J Z,KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. [2023-08-22]. https://arxiv.org/abs/1803.01271.
[17] OORD A,DIELEMAN S,ZEN H,et al. WaveNet:a generative model for raw audio[EB/OL]. [2023-08-22]. https://arxiv.org/abs/1609.03499.
[18] YU F,KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. [2023-08-22]. https://arxiv.org/abs/1511.07122.
[19] WILLMOTT C J,MATSUURA K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance[J]. Climate Research,2005,30(1):79-82.
[20] KINGMA D P,BA J. Adam:a method for stochastic optimization[EB/OL]. [2023-08-22]. https://arxiv.org/abs/1412.6980.
[21] LOSHCHILOV I,HUTTER F. SGDR:stochastic gradient descent with warm restarts[EB/OL]. [2023-08-22]. https://arxiv.org/abs/1608.03983.
-
期刊类型引用(36)
1. 方新秋,吴洋,宋扬,陈宁宁,丰宇龙,冯豪天,贺德幸,乔富康. 基于FBG传感器的带式输送机故障监测研究. 煤炭科学技术. 2025(01): 326-340 . 百度学术
2. 张文科,郭瑜,赵辉. 基于图像识别的煤矿带式输送机自适应调速系统设计. 煤炭工程. 2024(01): 220-224 . 百度学术
3. 刘锋,白金牛. 基于视觉技术的胶带输送机煤量检测方法. 陕西煤炭. 2024(01): 52-57+64 . 百度学术
4. 刘文梅. 基于煤流量监控的带式输送机监测方案设计. 机械管理开发. 2024(02): 243-244+247 . 百度学术
5. 岑梁,尹小明,黄海棠,胡文博,张世荣. 带式输送系统节能优化调度研究. 制造业自动化. 2024(05): 114-119 . 百度学术
6. 尚伟栋,杨大山,张坤. 基于深度神经网络的带式输送机煤量检测方法. 工矿自动化. 2024(S1): 139-145 . 本站查看
7. 张克亮. 基于MT-CNN的矿井带式输送机输煤量检测技术. 中国矿业. 2024(06): 137-142 . 百度学术
8. 王涛. 基于改进MobileNet的带式输送机煤量检测研究. 能源与环保. 2024(07): 198-202 . 百度学术
9. 尹瑞,张冬雪,倪强. 基于数组的刮板输送机运载模型及煤量计算算法研究. 工矿自动化. 2024(08): 84-90 . 本站查看
10. 段树深. 基于ROI边缘图像直线特征的井下带式输送机跑偏故障检测方法. 中国矿业. 2024(10): 162-167 . 百度学术
11. 刘西尧,纪妙,陈恩博,余宝意,曾庆杰,李海生. 基于机器视觉的烟草输送机皮带跑偏识别方法研究. 设备管理与维修. 2024(19): 165-169 . 百度学术
12. 左明明,张习,杨子豪,孙其飞,张梦超,张媛,李虎. 基于深度学习的输送带跑偏状态智能监测方法. 工矿自动化. 2024(12): 166-172+182 . 本站查看
13. 尚伟栋. 矿用带式输送机过载传感检测中的模糊阈值判断. 煤矿机械. 2023(04): 197-200 . 百度学术
14. 秦亚敏,张雷,赵东哲,张金辉,贾英新,靳晔. 基于机器视觉的带式输送机跑偏监测预警方法. 煤矿机械. 2023(05): 165-167 . 百度学术
15. 曾飞,胡文祥,高彦鑫,宋杰杰. 基于激光扫描的输送带横向跑偏检测系统. 制造业自动化. 2023(05): 21-24 . 百度学术
16. 吕晨辉,李新,刘新龙,赵安新,张晨阳. 基于煤量检测与变频一体机的煤流自适应智能调速. 煤矿机械. 2023(08): 213-216 . 百度学术
17. 李阿红. 基于图像处理的矿用带式输送机系统设计及其能效分析. 能源与环保. 2023(07): 228-232+238 . 百度学术
18. 曾飞,陶玉衡,苏俊彬,李翔. 融合ResNet18和Deconvolution的输送带横向跑偏检测方法. 现代制造工程. 2023(08): 121-126 . 百度学术
19. 毛清华,郭文瑾,翟姣,王荣泉,尚新芒,李世坤,薛旭升. 煤矿带式输送机异常状态视频AI识别技术研究. 工矿自动化. 2023(09): 36-46 . 本站查看
20. 高京,董华丛. 基于目标检测的铁路货车承载鞍错位故障识别. 自动化技术与应用. 2023(10): 63-67 . 百度学术
21. 周坪,马国庆,周公博,马天兵,李远博. 智能化带式输送机健康监测技术研究综述. 仪器仪表学报. 2023(12): 1-21 . 百度学术
22. 杨志方,张立亚,郝博南,刘渊,赵青. 基于双流融合网络的输送带跑偏检测方法. 煤炭科学技术. 2023(S2): 259-267 . 百度学术
23. 王桂梅,李学晖,杨立洁,刘杰辉. 基于深度学习的永磁直驱带式输送机煤量检测方法研究. 煤炭技术. 2022(01): 188-190 . 百度学术
24. 邢建旭,岑梁,卢峰,黄益军,胡文博,邱泽晶,张世荣. 基于带式输送机的仓储转运系统优化调度研究. 机电工程. 2022(03): 402-410 . 百度学术
25. 屠鑫. 基于图像识别的中长跑运动员摆臂高度校准方法研究. 河北北方学院学报(自然科学版). 2022(07): 7-12+18 . 百度学术
26. 白光星,陈炜乐,孙勇,宋双林,李国芳,王彩萍,王伟峰,康付如. 煤矿带式输送机运输火灾风险智能监测与早期预警技术研究进展. 煤矿安全. 2022(09): 47-54 . 百度学术
27. 王海军,王洪磊. 带式输送机智能化关键技术现状与展望. 煤炭科学技术. 2022(12): 225-239 . 百度学术
28. 刘孝军,王飞. 基于AI的煤矿视频智能分析技术. 煤炭科学技术. 2022(S2): 260-264 . 百度学术
29. 姜阔胜,李良和,王开松,胡坤. 煤矿输送带修复点定位及监测系统设计. 煤矿机械. 2021(02): 1-4 . 百度学术
30. 王平. 基于数字图像处理的输送带跑偏状态实时监测技术. 煤矿机械. 2021(02): 168-170 . 百度学术
31. 云艳. 矿用带式输送机跑偏机理及纠偏系统设计. 能源与环保. 2021(12): 264-268 . 百度学术
32. 李林. 矿用皮带输送机纠偏装置的分析研究. 机械管理开发. 2020(08): 74-75+78 . 百度学术
33. 高云飞. 带式输送机托辊结构受力分析. 中国石油和化工标准与质量. 2020(15): 157-158 . 百度学术
34. 张凯,田原,贾曲. 机器视觉在煤机装备中的应用现状与趋势. 煤矿机械. 2020(12): 123-125 . 百度学术
35. 陈小霞,徐伟同,侯飞,高奎,刘兆雪,温玺杰,王兵,王延勇,王晓倩. 基于图像处理的煤炭量AI识别系统的设计. 选煤技术. 2020(06): 75-80 . 百度学术
36. 成新文. 带式输送机防跑偏技术分析研究. 内蒙古煤炭经济. 2020(15): 47-48 . 百度学术
其他类型引用(15)