留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

综掘工作面气室降尘技术研究

张京兆 苏慧冬 闫振国 马文杰 熊帅 张宸毓

张京兆,苏慧冬,闫振国,等. 综掘工作面气室降尘技术研究[J]. 工矿自动化,2024,50(1):80-87.  doi: 10.13272/j.issn.1671-251x.2023060062
引用本文: 张京兆,苏慧冬,闫振国,等. 综掘工作面气室降尘技术研究[J]. 工矿自动化,2024,50(1):80-87.  doi: 10.13272/j.issn.1671-251x.2023060062
ZHANG Jingzhao, SU Huidong, YAN Zhenguo, et al. Research on dust reduction technology of air chamber in fully mechanized mining face[J]. Journal of Mine Automation,2024,50(1):80-87.  doi: 10.13272/j.issn.1671-251x.2023060062
Citation: ZHANG Jingzhao, SU Huidong, YAN Zhenguo, et al. Research on dust reduction technology of air chamber in fully mechanized mining face[J]. Journal of Mine Automation,2024,50(1):80-87.  doi: 10.13272/j.issn.1671-251x.2023060062

综掘工作面气室降尘技术研究

doi: 10.13272/j.issn.1671-251x.2023060062
基金项目: 国家自然科学基金资助项目(51974232)。
详细信息
    作者简介:

    张京兆(1976—),男,河南渑池人,副教授,主要从事矿井通风与粉尘防治方面的教学与研究工作,E-mail:1009282107@qq.com

    通讯作者:

    苏慧冬(1999—),男,陕西府谷人,硕士研究生,研究方向为矿井通风技术,E-mail:1599625948@qq.com

  • 中图分类号: TD714.4

Research on dust reduction technology of air chamber in fully mechanized mining face

  • 摘要: 针对掘进巷道中的粉尘控制问题,传统的长压短抽通风降尘技术存在粉尘扩散区域大、风幕降尘技术存在射流孔易堵塞等弊端。以巴拉素煤矿综掘工作面为工程研究背景,建立了掘进作业过程中的粉尘运动数学模型,得出降低综掘工作面粉尘浓度的关键因素是控制掘进巷道风流场扰动范围及减小粉尘颗粒运动时间。以上述关键因素为依据,在风幕降尘的基础上开发了气室降尘技术,通过在正压风筒末端加装风袖,与风幕共同作用将粉尘封闭在气室区域内,再由负压风机抽出,以提高降尘效率。采用Fluent软件对长压短抽通风降尘、风幕降尘和气室降尘进行模拟对比分析,并优化了气室降尘技术参数。模拟结果表明:采用气室降尘技术时,综掘工作面人体呼吸带位置的粉尘浓度为350 mg/m3,较采用长压短抽通风降尘时的600 mg/m3和风幕降尘时的480 mg/m3大幅降低;气室降尘最优技术参数为正压风筒出风口距综掘工作面14 m、负压风筒末端直径0.6 m。在巴拉素煤矿2号煤2号回风大巷综掘工作面进行现场试验,结果表明采用气室降尘时,掘进巷道最低粉尘浓度为118 mg/m3,低于采用长压短抽通风降尘时的184 mg/m3和风幕降尘时的156 mg/m3,且降尘效率较长压短抽通风降尘平均提高54.8%。

     

  • 图  1  气室降尘技术原理

    Figure  1.  Principle of air chamber dust reduction technology

    图  2  综掘工作面几何模型网格划分

    Figure  2.  Grid division of geometry model of fully mechanized mining face

    图  3  采用长压短抽通风降尘时综掘工作面粉尘浓度分布

    Figure  3.  Dust concentration distribution in fully mechanized mining face under longpressure and short suction ventilation for dust reduction

    图  4  采用风幕降尘时综掘工作面粉尘浓度分布

    Figure  4.  Dust concentration distribution in fully mechanized mining face under air curtain dust reduction

    图  5  采用气室降尘时综掘工作面粉尘浓度分布

    Figure  5.  Dust concentration distribution in fully mechanized mining face under air chamber dust reduction

    图  6  正压风筒出风口距综掘工作面不同距离时粉尘浓度分布

    Figure  6.  Dust concentration distribution under different distances of positive pressure air duct away from fully mechanized mining face

    图  7  不同负压风筒末端直径下综掘工作面粉尘浓度分布

    Figure  7.  Dust concentration distribution in fully mechanized mining face under different end diameter of negative pressure duct

    图  8  测点位置

    Figure  8.  Positions of measuring points

    图  9  不同降尘方式下综掘工作面粉尘浓度测量结果

    Figure  9.  Measured results of dust concentration distribution in fully mechanized mining face under different dust reduction methods

    图  10  不同降尘方式的降尘效率曲线

    Figure  10.  Dust reduction efficiency of different dust reduction methods

  • [1] 王雪涛,李静芸,别凤赛. 我国煤矿井下作业场所呼吸性粉尘危害现状调查[J]. 中华劳动卫生职业病杂志,2021,39(7):527-530.

    WANG Xuetao,LI Jingyun,BIE Fengsai. Investigation on the status of respirable dust hazards in underground mines in China[J]. Chinese Journal of Industrial Hygiene and Occupational Diseases,2021,39(7):527-530.
    [2] 周全超,杨胜强,蒋孝元,等. 综掘工作面粉尘分布规律及通风除尘优化研究[J]. 工矿自动化,2019,45(11):70-74,92.

    ZHOU Quanchao,YANG Shengqiang,JIANG Xiaoyuan,et al. Research on dust distribution law and optimization of ventilation and dust reduction on fully mechanized heading face[J]. Industry and Mine Automation,2019,45(11):70-74,92.
    [3] 丁震,张雨晨. 煤矿井下粉尘浓度对UWB测距精度的影响研究[J]. 工矿自动化,2021,47(11):131-134.

    DING Zhen,ZHANG Yuchen. Research on the influence of coal mine dust concentration on UWB ranging precision[J]. Industry and Mine Automation,2021,47(11):131-134.
    [4] 张宝林. 煤矿井下粉尘危害的防治[J]. 黑龙江科技信息,2016(29):42.

    ZHANG Baolin. Prevention and control of dust hazards in coal mine[J]. Heilongjiang Science and Technology Information,2016(29):42.
    [5] QIU Dongyang,CHEN Xianfeng,HAO Lijian,et al. Partial suppression of acetaminophendust explosion by synergistic multiphase inhibitors[J]. Process Safety and Environmental Protection,2023,172:262-272. doi: 10.1016/j.psep.2023.02.021
    [6] 王彦,杨娟,王继业,等. 玉米淀粉和墨粉粉尘爆炸对无火焰爆炸泄压装置性能的影响[J]. 工业安全与环保,2023,49(2):10-14.

    WANG Yan,YANG Juan,WANG Jiye,et al. Effect of corn starch and toner dust explosion on performance of flameless venting device[J]. Industrial Safety and Environmental Protection,2023,49(2):10-14.
    [7] 杜双利,张玉,张欢,等. 矿井煤尘爆炸及抑爆技术的研究现状及发展趋势[J]. 能源与环保,2022,44(8):296-301.

    DU Shuangli,ZHANG Yu,ZHANG Huan,et al. Research status and development trend of coal dust explosion and explosion suppression technology[J]. China Energy and Environmental Protection,2022,44(8):296-301.
    [8] 钱继发,刘贞堂,洪森,等. 煤尘爆炸固态产物的矿物质特性研究[J]. 煤炭学报,2018,43(11):3145-3153.

    QIAN Jifa,LIU Zhentang,HONG Sen,et al. Mineral features in coal dust explosion residues[J]. Journal of China Coal Society,2018,43(11):3145-3153.
    [9] 杜永星. 综采工作面新型风助喷雾降尘装置研制及应用[J]. 山东煤炭科技,2021,39(4):100-102.

    DU Yongxing. Development and application of new wind-assisted spray dust control device in fully mechanized mining face[J]. Shandong Coal Science and Technology,2021,39(4):100-102.
    [10] 张凯,陈天明,王冰洋,等. 综掘巷道抽出式通风粉尘运移规律仿真模拟研究[J]. 煤矿现代化,2022,31(6):74-77,83.

    ZHANG Kai,CHEN Tianming,WANG Bingyang,et al. Simulation study on dust transport law of extraction ventilation in fully mechanized roadway[J]. Coal Mine Modernization,2022,31(6):74-77,83.
    [11] GUO Lidian,NIE Wen,YIN Shuai,et al. The dust diffusion modeling and determination of optimal airflow rate for removing the dust generated during mine tunneling[J]. Building and Environment,2020,178. DOI: 10.1016/j.buildenv.2020.106846.
    [12] 陈云,张亮,黎志. 煤坪降尘用雾炮机降噪装置的研究与应用[J]. 煤炭技术,2021,40(7):140-142.

    CHEN Yun,ZHANG Liang,LI Zhi. Research and application of noise reduction device of fog gun used for coal flat dust removal[J]. Coal Technology,2021,40(7):140-142.
    [13] 魏星,高丹红,张国宝. 旋流气幕系统对综掘面控尘流场的影响研究[J]. 矿业研究与开发,2019,39(12):109-115.

    WEI Xing,GAO Danhong,ZHANG Guobao. The impact of swirling air curtain system on the dust control flow field in the fully-mechanized excavation face[J]. Mining Research and Development,2019,39(12):109-115.
    [14] 张恒. 综掘面尘源点对粉尘分布规律的影响及降尘措施的研究[D]. 西安:西安科技大学,2019.

    ZHANG Heng. Study on dust distribution rule affected by dust source and dust reduction measures in fully mechanized heading face[D]. Xi'an:Xi'an University of Science and Technology,2019.
    [15] 马文杰. 综掘工作面气室降尘技术及其优化研究[D]. 西安:西安科技大学,2022.

    MA Wenjie. Research on dust suppression technology and optimization of air cell in fully mechanized excavation face[D]. Xi'an:Xi'an University of Science and Technology,2022.
    [16] 赵政. 综掘工作面呼吸性粉尘运动方程研究[J]. 矿业安全与环保,2023,50(1):14-18,24.

    ZHAO Zheng. Research on the motion equation of respirable dust in fully mechanized excavation face[J]. Mining Safety & Environmental Protection,2023,50(1):14-18,24.
    [17] 乔力伟. 风幕通风方式下施工隧道粉尘浓度场相似模化实验与数值模拟[D]. 成都:西南交通大学,2019.

    QIAO Liwei. Similarity modeling experiment and numerical simulation in dust concentration field under air curtain ventilation mode[D]. Chengdu:Southwest Jiaotong University,2019.
    [18] 宋亚新,王帅,马国良,等. 涡流场中粉尘颗粒的沉降与扩散规律研究[J]. 能源与环保,2021,43(12):9-13.

    SONG Yaxin,WANG Shuai,MA Guoliang,et al. Study on laws of sedimentation and diffusion of dust particles in vortex field[J]. China Energy and Environmental Protection,2021,43(12):9-13.
    [19] 龚晓燕,彭高高,宋涛,等. 掘进工作面长压短抽通风出风口风流调控参数研究[J]. 工矿自动化,2021,47(9):45-52.

    GONG Xiaoyan,PENG Gaogao,SONG Tao,et al. Study on air flow control parameters of long-pressure and short-extraction ventilation air outlets in heading face[J]. Industry and Mine Automation,2021,47(9):45-52.
    [20] 龚晓燕,费颖豪,牛虎明,等. 掘进面出风口风流与风幕调控下的粉尘分布响应曲面优化研究[J]. 中国安全生产科学技术,2022,18(12):80-88.

    GONG Xiaoyan,FEI Yinghao,NIU Huming,et al. Study on response surface optimization of dust distribution under regulation of air flow and air curtain at air outlet of excavation face[J]. Journal of Safety Science and Technology,2022,18(12):80-88.
    [21] 代江娇,黄家海,荔军,等. 掘进巷道除尘系统风筒参数的数值优化[J]. 煤矿安全,2016,47(2):180-183.

    DAI Jiangjiao,HUANG Jiahai,LI Jun,et al. Numerical optimization of fan drum parameters in ventilation system of drifting tunnel[J]. Safety in Coal Mines,2016,47(2):180-183.
    [22] 罗庆云,唐艺芳,陈世强,等. 顺风流动下单双层喷嘴雾化特性的数值模拟研究[J]. 资源信息与工程,2023,38(3):116-120.

    LUO Qingyun,TANG Yifang,CHEN Shiqiang,et al. Numerical simulation of atomization characteristics for single-and double-layer nozzle under downwind flow[J]. Resource Information and Engineering,2023,38(3):116-120.
  • 加载中
图(10)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  53
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-20
  • 修回日期:  2024-01-15
  • 网络出版日期:  2024-01-31

目录

    /

    返回文章
    返回