留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巷道内瓦斯爆炸状态下人工坝体的力学响应研究

屈世甲 杨欢

屈世甲,杨欢. 巷道内瓦斯爆炸状态下人工坝体的力学响应研究[J]. 工矿自动化,2023,49(9):132-139.  doi: 10.13272/j.issn.1671-251x.2023040078
引用本文: 屈世甲,杨欢. 巷道内瓦斯爆炸状态下人工坝体的力学响应研究[J]. 工矿自动化,2023,49(9):132-139.  doi: 10.13272/j.issn.1671-251x.2023040078
QU Shijia, YANG Huan. Research on mechanical response of artificial dam under gas explosion in roadway[J]. Journal of Mine Automation,2023,49(9):132-139.  doi: 10.13272/j.issn.1671-251x.2023040078
Citation: QU Shijia, YANG Huan. Research on mechanical response of artificial dam under gas explosion in roadway[J]. Journal of Mine Automation,2023,49(9):132-139.  doi: 10.13272/j.issn.1671-251x.2023040078

巷道内瓦斯爆炸状态下人工坝体的力学响应研究

doi: 10.13272/j.issn.1671-251x.2023040078
基金项目: 中煤科工集团常州研究院有限公司科技创新项目(2022FY0002)。
详细信息
    作者简介:

    屈世甲(1984—),男,陕西铜川人,副研究员,硕士,主要研究方向为煤矿安全信息化、智能化及分析预警技术,E-mail:qushijiacz@sina.com

  • 中图分类号: TD322

Research on mechanical response of artificial dam under gas explosion in roadway

  • 摘要: 当矿井发生瓦斯爆炸时,爆炸冲击波会破坏储水坝体,导致采空区储水大量涌出,甚至造成瓦斯与水耦合灾害,因此,人工坝体在极端条件下的稳定性对矿井安全具有重要意义。针对当前对井下人工坝体随瓦斯爆炸冲击波传播的力学响应特性研究较少的问题,利用LS−DYNA软件模拟了巷道内瓦斯爆炸对人工坝体力学性能的影响,研究了迎爆侧、黄土夹层及背爆侧受力状态、形变和应力特征,分析了巷道内瓦斯爆炸冲击波作用下人工坝体的动力响应过程。人工坝体表面载荷分布分析结果表明:当巷道内部发生爆炸时,人工坝体迎爆面的爆炸荷载为不均匀分布,同时在井下各结构相交区域,反射超压因反射冲击波的汇聚和叠加作用而产生明显的增强效应;随着爆炸能量的快速释放,迎爆面中心测点的冲量加载时程曲线表现为三阶段变化特征,当瓦斯体积为200 m3时,在起爆500 ms内,迎爆面中心测点的最大冲量可以达到0.04 MPa·s。人工坝体表面形变和应力分析结果表明:在0~500 ms内,迎爆面中部始终处于受压状态,中心节点的最大横向位移为0.319 mm,由于掏槽的作用,人工坝体四周受拉应力,在此处出现了最大拉应力及剪切应力;黄土夹层动力响应依次为“受压−压实−塑变−传压”,在该过程中黄土起到缓冲作用,最大位移为0.067 5 mm;背爆侧墙体由于受到黄土夹层的挤压而发生力学响应,但应力都较小,外侧墙体基本处于安全状态。

     

  • 图  1  人工坝体三维模型

    Figure  1.  3D model of artificial dam

    图  2  迎爆面测点位置

    Figure  2.  Location of measuring points on the explosion facing surface

    图  3  水平测点的超压时程曲线

    Figure  3.  Overpressure time history curves of horizontal measuring points

    图  4  竖向测点的超压时程曲线

    Figure  4.  Overpressure time history curves of vertical measuring points

    图  5  测点1的冲量加载时程曲线

    Figure  5.  Impulse loading time history curve of measuring point 1

    图  6  不同时刻人工坝体迎爆面应力分布云图

    Figure  6.  Cloud map of stress distribution on the explosion facing surface of artificial dam at different times

    图  7  分析墙面定义

    Figure  7.  Analyzing wall definition

    图  8  迎爆侧第1主应力云图

    Figure  8.  Cloud chart of the first principal stress on the explosion facing side

    图  9  迎爆侧最大切应力云图

    Figure  9.  Cloud chart of the maximum shear stress on the explosion facing side

    图  10  迎爆侧第3主应力云图

    Figure  10.  Cloud chart of the third principal stress on the blast facing side

    图  11  迎爆侧等效应力云图

    Figure  11.  Equivalent stress cloud map on the explosion facing side

    图  12  人工坝体的位移时程曲线

    Figure  12.  Displacement time history curve of artificial dam

    图  13  背爆侧墙体第1主应力云图

    Figure  13.  Cloud map of the first principal stress on the explosion backing side

    图  14  背爆侧墙体第3主应力云图

    Figure  14.  Cloud map of the third principal stress on the explosion backing side

    图  15  背爆侧墙体最大切应力云图

    Figure  15.  Cloud map of maximum shear stress on the explosion backing side

    图  16  背爆侧墙体等效应力云图

    Figure  16.  Equivalent stress cloud map on the explosion backing side

    表  1  混合气体材料及状态方程参数

    Table  1.   Parameters of mixed gas material and its state equation

    甲烷体积分数/% 密度/(kg·m−3 爆速/(m·s−1 爆热/(MJ·kg−1 E/(MJ·m−3 V C0C3 C4C5 C6
    9.5 1.234 1 855 2.762 3.4 1 0 0.274 0
    下载: 导出CSV

    表  2  空气材料及状态方程参数

    Table  2.   Parameters of air material and its state equation

    材料 密度/(kg·m−3 C0 C1C3 C4 C5 C6 E/(MJ·m−3 V
    空气 1.29 −1×105 0 0.4 0.4 0 0.25 1
    下载: 导出CSV

    表  3  黄土及围岩材料参数

    Table  3.   Parameters of loess and rock layer materials

    材料 密度/(kg·m−3 泊松比 弹性模量/Pa
    黄土 1 810 0.45 2.40×107
    围岩 2 600 0.19 2.07×1010
    下载: 导出CSV
  • [1] 卞正富,周跃进,曾春林,等. 废弃矿井抽水蓄能地下水库构建的基础问题探索[J]. 煤炭学报,2021,46(10):3308-3318. doi: 10.13225/j.cnki.jccs.yg21.0392

    BIAN Zhengfu,ZHOU Yuejin,ZENG Chunlin,et al. Discussion of the basic problems for the construction of underground pumped storage reservoir in abandoned coal mines[J]. Journal of China Coal Society,2021,46(10):3308-3318. doi: 10.13225/j.cnki.jccs.yg21.0392
    [2] 王德明,邵振鲁,朱云飞. 煤矿热动力重大灾害中的几个科学问题[J]. 煤炭学报,2021,46(1):57-64. doi: 10.13225/j.cnki.jccs.YG20.1798

    WANG Deming,SHAO Zhenlu,ZHU Yunfei. Several scientific issues on major thermodynamic disasters in coal mines[J]. Journal of China Coal Society,2021,46(1):57-64. doi: 10.13225/j.cnki.jccs.YG20.1798
    [3] 杨书召,景国勋,贾智伟,等. 矿井瓦斯爆炸高速气流的破坏和伤害特性研究[J]. 中国安全科学学报,2009,19(5):86-90,181. doi: 10.3969/j.issn.1003-3033.2009.05.014

    YANG Shuzhao,JING Guoxun,JIA Zhiwei,et al. Study on the damaging characteristics of high-speed air flow produced by gas explosion in coal mines[J]. China Safety Science Journal,2009,19(5):86-90,181. doi: 10.3969/j.issn.1003-3033.2009.05.014
    [4] 袁芙蓉. 瓦斯/煤尘爆炸冲击波作用下结构的动力响应探讨[J]. 煤矿机械,2017,38(6):65-67. doi: 10.13436/j.mkjx.201706026

    YUAN Furong. Discussion on dynamic response of structure under gas/coal dust explosion shock wave[J]. Coal Mine Machinery,2017,38(6):65-67. doi: 10.13436/j.mkjx.201706026
    [5] 程方明,邓军,蔡周全,等. 瓦斯积聚范围对独头巷道瓦斯爆炸冲击波破坏特征与传播规律的影响[J]. 矿业安全与环保,2016,43(4):1-5,9. doi: 10.3969/j.issn.1008-4495.2016.04.001

    CHENG Fangming,DENG Jun,CAI Zhouquan,et al. Influence of gas accumulation scope on destroying characteristics and propagation laws of gas explosion pressure waves in a blind tunnel[J]. Mining Safety & Environmental Protection,2016,43(4):1-5,9. doi: 10.3969/j.issn.1008-4495.2016.04.001
    [6] 付搏涛,李钢,张红,等. 基于GDEM−PDyna的尾矿库溃坝三维数值模拟分析研究[J]. 中国安全生产科学技术,2023,19(2):71-77.

    FU Botao,LI Gang,ZHANG Hong,et al. Three-dimensional numerical simulation analysis of tailings dam break based[J]. Journal of Safety Science and Technology,2023,19(2):71-77.
    [7] 朱传杰,林柏泉,江丙友,等. 煤矿瓦斯爆炸冲击波多相破坏效应研究[J]. 中国矿业大学学报,2013,42(5):718-724,730. doi: 10.13247/j.cnki.jcumt.2013.05.003

    ZHU Chuanjie,LIN Baiquan,JIANG Bingyou,et al. Multiphase destructive effects of shock wave resulting from coal mine gas explosion[J]. Journal of China University of Mining & Technology,2013,42(5):718-724,730. doi: 10.13247/j.cnki.jcumt.2013.05.003
    [8] 罗新荣,杨欢,李梦坤. 围压加载条件下岩体损伤特征实验及数值模拟分析[J]. 矿业安全与环保,2019,46(3):18-22. doi: 10.3969/j.issn.1008-4495.2019.03.004

    LUO Xinrong,YANG Huan,LI Mengkun. Experimental and numerical analysis of damage characteristic of rock mass under the condition of confining pressure loading[J]. Mining Safety &Environmental Protection,2019,46(3):18-22. doi: 10.3969/j.issn.1008-4495.2019.03.004
    [9] 景一,张西西,程健维. 基于ANSYS数值模拟的密闭墙抗爆冲击安全性分析[J]. 煤矿安全,2017,48(11):194-197. doi: 10.13347/j.cnki.mkaq.2017.11.052

    JING Yi,ZHANG Xixi,CHENG Jianwei. Safety analysis of anti-explosive and anti-impacted airtight wall based on ANSYS numerical simulation[J]. Safety in Coal Mines,2017,48(11):194-197. doi: 10.13347/j.cnki.mkaq.2017.11.052
    [10] 朱邵飞,叶青,柳伟,等. 瓦斯爆炸对地下巷道破坏效应的数值模拟分析[J]. 湖南科技大学学报(自然科学版),2019,34(4):17-23.

    ZHU Shaofei,YE Qing,LIU Wei,et al. Numerical simulation analysis of damage effects of gas explosion to underground roadways[J]. Journal of Hunan University of Science and Technology (Natural Science Edition),2019,34(4):17-23.
    [11] ZHANG Xixi,CHENG Jianwei,SHI Congling. Damage assessment for underground brick seal under explosion impact load[J]. Arabian Journal of Geosciences,2021,14(5). DOI: 10.1007/s12517-021-06681-8.
    [12] CHENG Jianwei,SONG Wanting,JING Yi,et al. Research on mine seal stability under explosion load and ground pressure in underground coal mines[J]. Archives of Mining Sciences,2020,65(1):71-87.
    [13] 王最. 瓦斯爆炸波冲击作用下夹层密闭墙动力响应特性与结构优化研究[D]. 徐州:中国矿业大学,2022.

    WANG Zui. Study on dynamic response characteristics and structural optimization of sandwich seals under the impact of gas explosion wave[D]. Xuzhou:China University of Mining and Technology,2022.
    [14] 池明波,李鹏,曹志国,等. 煤矿地下水库平板型人工坝体抗震性能分析[J]. 煤炭学报,2023,48(3):1179-1191.

    CHI Mingbo,LI Peng,CAO Zhiguo,et al. Seismic performance analysis of flat artificial dam of underground reservoir in coal mine[J]. Journal of China Coal Society,2023,48(3):1179-1191.
    [15] 孔繁龙,刘敬东,田灵涛,等. 水岩作用下区段煤柱合理宽度研究[J]. 工矿自动化,2022,48(12):144-150.

    KONG Fanlong,LIU Jingdong,TIAN Lingtao,et al. Study on reasonable width of coal pillar under water-rock interaction[J]. Journal of Mine Automation,2022,48(12):144-150.
    [16] 卢卫永,刘琦,屈丽娜,等. 单轴压缩条件下不同含水率煤体裂纹扩展及破坏模式研究[J]. 工矿自动化,2022,48(8):85-91.

    LU Weiyong,LIU Qi,QU Lina,et al. Study on coal crack propagation and failure mode with different moisture content under uniaxial compression[J]. Journal of Mine Automation,2022,48(8):85-91.
    [17] 邓鹏. 地下结构在内爆炸冲击下墙柱构件上的荷载分布及其动力响应研究[D]. 天津:天津大学,2014.

    DENG Peng. The load distribution and dynamic response of walls and columns of underground structure under internal explosion[D]. Tianjin:Tianjin University,2014.
    [18] 李志鹏. 瓦斯爆炸作用下隧道衬砌致损机理及修复技术研究[D]. 北京:北京科技大学,2019.

    LI Zhipeng. Study on damage mechanism and repair technology of tunnel lining subjected to gas explosion[D]. Beijing:University of Science and Technology Beijing,2019.
    [19] 陈长坤,陈杰,史聪灵,等. 天然气爆炸荷载作用下地下管廊动力响应规律研究[J]. 铁道科学与工程学报,2017,14(9):1907-1914. doi: 10.3969/j.issn.1672-7029.2017.09.015

    CHEN Changkun,CHEN Jie,SHI Congling,et al. Analysis of dynamic response of utility tunnel subjected to natural gas explosion loads[J]. Journal of Railway Science and Engineering,2017,14(9):1907-1914. doi: 10.3969/j.issn.1672-7029.2017.09.015
    [20] 金友平,帅健,王旭,等. 狭长受限空间内燃气燃爆灾害演化规律研究[J/OL]. 防灾减灾工程学报:1-11[2023-03-17]. DOI: 10.13409/j.cnki.jdpme.20220629004.

    JIN Youping,SHUAI Jian,WANG Xu,et al. Study on evolution law of gas explosion disaster in narrow and confined space[J/OL]. Journal of Disaster Prevention and Mitigation Engineering:1-11[2023-03-17]. DOI:10.13409/j.cnki.jdpme. 20220629004.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  786
  • HTML全文浏览量:  58
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-25
  • 修回日期:  2023-09-15
  • 网络出版日期:  2023-09-27

目录

    /

    返回文章
    返回