一种矿用管道检测机器人设计及牵引性能分析

Mine pipeline inspection robot design and traction performance analysis

  • 摘要: 针对瓦斯抽采管道破损泄漏检测问题,设计了一种具有管道检测和运动控制功能的螺旋式矿用管道检测机器人,介绍了该机器人的结构和检测与控制系统方案。建立了机器人在管道中运行的力学分析模型,并通过动力学仿真研究了影响机器人牵引性能的因素,结果表明:机器人在管道内运行时的牵引力与管道材质、螺旋角、管壁与驱动轮之间法向力有关;机器人在不同材质的管道中运行时最佳螺旋角不同,在相同材质的管道中运行时,无介质运输情况下牵引力高于有介质运输情况;机器人牵引力随法向力的增大而增大,但最佳螺旋角无明显变化;随着螺旋角增大,牵引力先增大后减小,螺旋角为40°时牵引力最大。为提高机器人通过弯管时的性能,提出一种变螺旋角过弯策略,即机器人主动控制螺旋角随螺旋运动单元转动以正弦式规律变化,使管道内侧的螺旋角小于外侧。搭建机器人测试平台对矿用管道检测机器人进行测试,结果表明:机器人在直管中运行的最佳螺旋角为40°;可通过增加法向力来提升机器人的牵引性能;采用变螺旋角过弯策略时,机器人在弯管中的通过性能和平稳性优于定螺旋角过弯。

     

    Abstract: In response to the problem of gas extraction pipeline damage and leakage inspection, a spiral mine pipeline inspection robot with pipeline inspection and motion control functions is designed. The structure and inspection and control system scheme of the robot are introduced. A mechanical analysis model is established for the operation of robots in pipelines, and the factors affecting the robot's traction performance are studied through dynamic simulation. The results show that the traction force of the robot during operation in the pipeline is related to the pipeline material, spiral angle, and the normal force between the pipeline wall and the driving wheel. The optimal spiral angle for robots operating in pipelines of different materials is different. When operating in pipelines of the same material, the traction force is higher in the absence of medium transportation than in the presence of medium transportation. The traction force of the robot increases with the increase of normal force. But there is no significant change in the optimal spiral angle. As the spiral angle increases, the traction force first increases and then decreases, reaching its maximum at a spiral angle of 40°. To improve the performance of robots passing through curved pipes, a variable spiral angle bending strategy is proposed. The robot actively controls the spiral angle to change in a sinusoidal pattern with the rotation of the spiral motion unit, so that the spiral angle on the inner side of the pipeline is smaller than that on the outer side. A robot testing platform to test the mine pipeline inspection robot is established. The results show that the optimal spiral angle for the robot to operate in the straight pipe is 40°. The traction performance of the robot can be improved by increasing the normal force. When using the variable spiral angle bending strategy, the robot has better performance and stability in passing through curved pipes compared to fixed spiral angle bending.

     

/

返回文章
返回