基于局部几何−拓扑地图的地下矿自动驾驶定位导航方法

刘仕杰, 邹渊, 张旭东

刘仕杰,邹渊,张旭东. 基于局部几何−拓扑地图的地下矿自动驾驶定位导航方法[J]. 工矿自动化,2023,49(8):70-80. DOI: 10.13272/j.issn.1671-251x.2023020010
引用本文: 刘仕杰,邹渊,张旭东. 基于局部几何−拓扑地图的地下矿自动驾驶定位导航方法[J]. 工矿自动化,2023,49(8):70-80. DOI: 10.13272/j.issn.1671-251x.2023020010
LIU Shijie, ZOU Yuan, ZHANG Xudong. A localization and navigation method for underground mine autonomous driving based on local geometric topology map[J]. Journal of Mine Automation,2023,49(8):70-80. DOI: 10.13272/j.issn.1671-251x.2023020010
Citation: LIU Shijie, ZOU Yuan, ZHANG Xudong. A localization and navigation method for underground mine autonomous driving based on local geometric topology map[J]. Journal of Mine Automation,2023,49(8):70-80. DOI: 10.13272/j.issn.1671-251x.2023020010

基于局部几何−拓扑地图的地下矿自动驾驶定位导航方法

基金项目: 国家自然科学基金项目(52272410)。
详细信息
    作者简介:

    刘仕杰(1998—),男,辽宁抚顺人,硕士研究生,研究方向为自动驾驶技术,E-mail:986550410@qq.com

    通讯作者:

    张旭东(1988—),男,江苏徐州人,副教授,博士研究生导师,博士,研究方向为自动驾驶技术,E-mail:xudong.zhang@bit.edu.cn

  • 中图分类号: TD524

A localization and navigation method for underground mine autonomous driving based on local geometric topology map

  • 摘要: 无人驾驶技术在提高效率、节省成本、减少安全隐患等方面具有巨大优势。针对目前地下环境中定位导航方案实施难度大、成本高、构建地图耗时长等问题,提出了一种基于局部几何−拓扑地图的地下矿自动驾驶定位导航方法。设计了一种局部几何−拓扑地图,井下环境的路网主体结构由拓扑地图表示,该地图上定义了巷道(边)和交叉路口(节点),在每个节点中存储以该节点为中心构建的局部几何地图,用以实现节点处的精确定位。提出了一种基于局部几何−拓扑地图的定位方法,使用基于激光雷达的交叉路口检测算法与交叉路口定位算法进行车辆全局定位。设计了一种基于自适应模型预测控制(MPC)的轨迹跟随算法,保证车辆在交叉路口大曲率转向时的路径跟踪精度。使用三维物理仿真平台构建了地下矿的仿真环境与车辆仿真模型,仿真结果表明:该方法能够实现地下矿自动驾驶定位导航功能,在各种类型交叉路口的定位误差均在0.2 m以内,可以满足自动驾驶的定位精度要求;在整个行驶过程中车辆始终保持较为平稳的行驶状态和较小的跟踪误差。与目前依赖于5G、UWB等技术的定位导航方法相比,该方法仅依赖于激光雷达与惯性测量单元2种车身传感器,在控制设备成本上具有极大优势。
    Abstract: Unmanned driving technology has enormous advantages in improving efficiency, saving costs and reducing safety hazards. In the current implementation of localization and navigation solutions in underground environments, there are problems of implementation difficulties, high costs, and time-consuming construction of maps. In order to solve the above problems, a localization and navigation method for underground mine autonomous driving based on local geometric topology map is proposed. A local geometric topology map has been designed. The main structure of the underground environment road network is represented by a topology map. The map defines roadways (sides) and intersections (nodes), and stores a local geometric map built around the node in each node to achieve precise positioning at the node. A localization method based on local geometric topology map is proposed, which uses a LiDAR-based intersection detection algorithm and intersection localization algorithm for global vehicle localization. A trajectory-following algorithm based on adaptive model predictive control (MPC) has been designed to ensure the path-tracking precision of vehicles turning at high curvature intersections. A simulation environment and vehicle simulation model for underground mines are constructed by using a 3D physical simulation platform. The simulation results show that this method can achieve underground mine autonomous driving localization and navigation functions. The positioning errors are within 0.2 m at various types of intersections, meeting the positioning localization precision requirements of autonomous driving. Throughout the entire driving process, the vehicle maintains a relatively stable driving state and a small tracking error. Compared with the current localization and navigation methods that rely on technologies such as 5G and UWB, this method only relies on two types of vehicle sensors: LiDAR and inertial measurement unit. It has great advantages in controlling equipment costs.
  • 图  1   公制几何地图

    Figure  1.   Metric geometric map

    图  2   拓扑地图

    Figure  2.   Topological map

    图  3   局部几何−拓扑地图结构

    Figure  3.   Structure of local geometric-topological map

    图  4   拓扑地图示例

    Figure  4.   Example of a topological map

    图  5   激光雷达光束模型

    Figure  5.   Lidar beam model

    图  6   光束模型距离−角度直方图

    Figure  6.   Range-angle histogram of the beam model

    图  7   归一化的光束模型距离−角度直方图

    Figure  7.   Normalized range-angle histogram of the beam model

    图  8   交叉路口检测算法伪代码

    Figure  8.   Pseudo-code of intersection detection algorithm

    图  9   交叉路口检测效果

    Figure  9.   Intersection detection effect

    图  10   全局定位算法流程

    Figure  10.   Flow of global positioning algorithm

    图  11   交叉路口局部定位算法伪代码

    Figure  11.   Pseudo-code of local positioning algorithm for intersection

    图  12   交叉路口轨迹跟随

    Figure  12.   Intersection trajectory following

    图  13   巷道行驶

    Figure  13.   Roadway driving

    图  14   二自由度车辆模型

    Figure  14.   The two-degree-of-freedom vehicle model

    图  15   地下矿自动驾驶系统框架

    Figure  15.   Framework of underground mine automatic driving system

    图  16   地下矿环境模型

    Figure  16.   Model of underground mine environment

    图  17   无人驾驶车辆模型

    Figure  17.   Model of driverless vehicle

    图  18   地下矿环境拓扑地图

    Figure  18.   Topological map of underground mine environment

    图  19   车辆行驶路线

    Figure  19.   Vehicle routes

    图  20   11→10→3路段行驶轨迹

    Figure  20.   Driving trajectory on section 11→10→3

    图  21   不同算法计算耗时对比

    Figure  21.   Comparison of calculation time of different algorithms

    图  22   不同算法的点云配准距离差平均值对比

    Figure  22.   Comparison of average distance differences in point cloud registration of different algorithms

    图  23   定位误差

    Figure  23.   Positioning error

    图  24   车辆期望前轮转角

    Figure  24.   Desired front wheel angle of the vehicle

    图  25   实际车辆纵向速度

    Figure  25.   Actual vehicle longitudinal velocity

    图  26   车辆横摆角及横摆角速度

    Figure  26.   Vehicle yaw angle and yaw speed

    图  27   车辆横向偏差及横摆角偏差

    Figure  27.   Vehicle lateral deviation and yaw angle deviation

    图  28   节点2定位结果

    Figure  28.   Node 2 positioning results

    图  29   节点3定位结果

    Figure  29.   Node 3 positioning results

    图  30   节点12定位结果

    Figure  30.   Node 12 positioning results

  • [1]

    SCHEDING S,DISSANAYAKE G,NEBOT E M,et al. An experiment in autonomous navigation of an underground mining vehicle[J]. IEEE Transactions on Robotics & Automation,2001,15(1):85-95.

    [2]

    DUFF E S, ROBERTS J M, CORKE P I. Automation of an underground mining vehicle using reactive navigation and opportunistic localization[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, 2003:3775-3780.

    [3]

    MEECH J,PARREIRA J. An interactive simulation model of human drivers to study autonomous haulage trucks[J]. Procedia Computer Science,2011,6(1):118-123.

    [4]

    SZREK J, ZIMROZ R, WODECKI J, et al. Application of the infrared thermography and unmanned ground vehicle for rescue action support in underground mine-the AMICOS project[J]. Remote Sensing, 2021, 13(1). DOI: 10.3390/rs13010069.

    [5] 张元刚,刘坤,白猛,等. 井下多传感器组合导航系统[J]. 工矿自动化,2019,45(7):10-16.

    ZHANG Yuangang,LIU Kun,BAI Meng,et al. Underground multi-sensor integrated navigation system[J]. Industry and Mine Automation,2019,45(7):10-16.

    [6] 杨林,马宏伟,王岩,等. 煤矿巡检机器人同步定位与地图构建方法研究[J]. 工矿自动化,2019,45(9):18-24.

    YANG Lin,MA Hongwei,WANG Yan,et al. Research on method of simultaneous localization and mapping of coal mine inspection robot[J]. Industry and Mine Automation,2019,45(9):18-24.

    [7]

    CHEHRI A,FORTIER P,TARDIF P M. UWB-based sensor networks for localization in mining environments[J]. Ad Hoc Networks,2009,7(5):987-1000. DOI: 10.1016/j.adhoc.2008.08.007

    [8] 杜京义,郭金宝,张渤. 井下无人驾驶列车惯性导航定位系统[J]. 工矿自动化,2018,44(9):5-9.

    DU Jingyi,GUO Jinbao,ZHANG Bo. Inertial navigation and positioning system for underground driverless train[J]. Industry and Mine Automation,2018,44(9):5-9.

    [9] 周李兵. 煤矿井下无轨胶轮车无人驾驶系统研究[J]. 工矿自动化,2022,48(6):36-48.

    ZHOU Libing. Research on unmanned driving system of underground trackless rubber-tyred vehicle in coal mine[J]. Journal of Mine Automation,2022,48(6):36-48.

    [10] 陈伟. 煤矿井下精确定位系统研究[J]. 工矿自动化,2019,45(12):86-90.

    CHEN Wei. Research on precise positioning system of coal mine underground[J]. Industry and Mine Automation,2019,45(12):86-90.

    [11] 孙继平,江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化,2022,48(5):1-5,31.

    SUN Jiping,JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5,31.

    [12] 李论. 基于RSSI的煤矿巷道高精度定位算法研究[D]. 徐州: 中国矿业大学, 2015.

    LI Lun. Research of precision positioning algorithm based on RSSI in coal mine tunnel[D]. Xuzhou: China University of Mining and Technology, 2015.

    [13] 唐丽均,吴畏. 煤矿井下精确定位系统中的节点设计[J]. 煤炭工程,2015,47(6):18-20.

    TANG Lijun,WU Wei. Node design in accurate positioning system for underground coal mine[J]. Coal Engineering,2015,47(6):18-20.

    [14] 游小荣,裴浩,霍振龙. 一种基于UWB的三边定位改进算法[J]. 工矿自动化,2019,45(11):19-23.

    YOU Xiaorong,PEI Hao,HUO Zhenlong. An improved trilateral positioning algorithm based on UWB[J]. Industry and Mine Automation,2019,45(11):19-23.

    [15]

    RADACINA RUSU S. Real-time localization in large-scale underground environments using RFID-based node maps[D]. Ottawa: Carleton University, 2011.

    [16]

    LARSON E J. Vehicle localization in an underground mine using ultrasonic sensors[D]. Golden: Colorado School of Mines, 2012.

    [17]

    MASCARÓ M,PARRA-TSUNEKAWA I,TAMPIER C,et al. Topological navigation and localization in tunnels-application to autonomous load-haul-dump vehicles operating in underground mines[J]. Applied Sciences,2021,11(14):6547. DOI: 10.3390/app11146547

    [18]

    MARSHALL J,BARFOOT T,LARSSON J. Autonomous underground tramming for center-articulated vehicles[J]. Journal of Field Robotics,2008,25(6):400-421.

    [19]

    HABIB M K, YUTA S. Map representation and path planning for mobile robots in a building environment[C]. IEEE International Workshap on Intelligent Robots, Tokyo, 1988: 173-178.

    [20]

    KUIPERS B,BRUYN Y T. A robot exploration and mapping strategy based on a semantic hierarchy of spacial representations[J]. Robotics and Autonomous Systems,1991,8:47-63. DOI: 10.1016/0921-8890(91)90014-C

    [21]

    LI Qingquan,CHEN Long,ZHU Quanwen,et al. Intersection detection and recognition for autonomous urban driving using a virtual cylindrical scanner[J]. Intelligent Transport Systems,2014,8(3):244-254. DOI: 10.1049/iet-its.2012.0202

    [22] 崔文,薛棋文,李庆玲,等. 基于三维点云地图和ESKF的无人车融合定位方法[J]. 工矿自动化,2022,48(9):116-122.

    CUI Wen,XUE Qiwen,LI Qingling,et al. Unmanned vehicle fusion positioning method based on 3D point cloud map and ESKF[J]. Journal of Mine Automation,2022,48(9):116-122.

    [23]

    BESL P J,MCKAY H D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,1992,14(2):239-256.

    [24] 顾文华,周波,戴先中. 基于ICP匹配算法的室内移动机器人定位[J]. 华中科技大学学报(自然科学版),2013,41(增刊1):262-266.

    GU Wenhua,ZHOU Bo,DAI Xianzhong. ICP matching algorithm-based localization of indoor mobile robots[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2013,41(S1):262-266.

    [25]

    BIBER P, STRASSER W. The normal distributions transform: a new approach to laser scan matching[C]. IEEE/RSJ International Conference on Intelligent Robots & Systems, Las Vegas, 2003: 2743-2748.

    [26] 余洪山,付强,孙健,等. 面向室内移动机器人的改进3D−NDT点云配准算法[J]. 仪器仪表学报,2019,40(9):151-161.

    YU Hongshan,FU Qiang,SUN Jian,et al. Improved 3D-NDT point cloud registration algorithm for indoor mobile robot[J]. Chinese Journal of Scientific Instrument,2019,40(9):151-161.

    [27]

    CHEN B, TSAI C, LEE K. Path-following steering controller of automated lane change system with adaptive preview time[C]. IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong, 2015: 2522-2526.

  • 期刊类型引用(4)

    1. 陈生凯,明平田,申宁. 青海某金矿安全监管视频AI智能系统建设. 黄金. 2025(01): 20-23+36+6 . 百度学术
    2. 张智龙,谢凯迪,曹呈功. 基于AI大数据处理平台结合智能网联设备的一体化矿山智慧施工方案. 工程机械. 2024(05): 198-202+263 . 百度学术
    3. 张景新,杨宗翰,杨小平. AI与IOT技术在协同商业生态系统中的影响机制——基于WSR方法的案例分析. 科技管理研究. 2024(13): 169-179 . 百度学术
    4. 张星笃. 南湖七矿汽车装车系统智能化改造实践. 选煤技术. 2024(06): 91-95 . 百度学术

    其他类型引用(0)

图(30)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  78
  • PDF下载量:  31
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-02-01
  • 修回日期:  2023-08-14
  • 网络出版日期:  2023-09-03
  • 刊出日期:  2023-08-24

目录

    /

    返回文章
    返回