Research on vertical air leakage law of surface in goaf of shallow coal seams under different seasonal conditions
-
摘要: 在采动影响下浅埋煤层综放工作面上覆岩层垮落形成与地表贯通的裂隙,这些裂隙导致的地表垂直漏风对采空区煤自燃有重要影响。为研究不同季节条件下浅埋煤层采空区地表垂直漏风规律,分别在冬、春、夏、秋4个季节利用SF6气体示踪法对陕西陕煤曹家滩矿业有限公司122108工作面进行地表垂直漏风测定,分析了不同季节地表和井下采空区的温度、大气压强及漏风速率变化规律。结果表明:① 冬季工作面地表和井下采空区之间的温差相对较大,最大温差可达37.7 ℃,夏季工作面地表和井下采空区之间的温差相对较小,最小温差仅为0.9 ℃;冬季工作面地表和井下采空区之间的最大气压差达40.37 hPa,夏季工作面地表和井下采空区之间的最大气压差为22.47 hPa;春季和秋季工作面地表和井下采空区之间的温差、气压差则相差不大。② 冬季漏风速率相对较大,平均最大漏风速率达8.364 m/min;夏季漏风速率相对较小,平均最大漏风速率为6.918 m/min;春季与秋季的漏风速率相差不大。③ 距工作面较近时,漏风速率较大。根据地表垂直漏风规律,可采取井下均压、进回风隅角封堵及地表裂隙覆盖等措施,以保证122108工作面安全开采。Abstract: Under the influence of mining, the overlying strata of shallow coal seam fully mechanized top coal caving face collapses and forms cracks that connect with the surface. The vertical air leakage caused by these cracks has a significant impact on the spontaneous combustion of coal in the goaf. In order to study the vertical air leakage law of surface in goaf of shallow coal seam under different seasonal conditions, SF6 gas tracing method is used to measure the vertical air leakage on the 122108 working face of Shaanxi Coal Caojiatan Mining Co., Ltd. in four seasons: winter, spring, summer, and autumn. The temperature, atmospheric pressure, and air leakage rate changes on the surface and underground goaf during different seasons are analyzed. The results show the following points. ① In winter, the temperature difference between the surface of the working face and the underground goaf is relatively large, with a maximum temperature difference of 37.7 ℃. In summer, the temperature difference between the surface of the working face and the underground goaf is relatively small, with a minimum temperature difference of only 0.9 ℃. The maximum pressure difference between the surface of the working face and the underground goaf in winter is 40.37 hPa. The maximum pressure difference between the surface of the working face and the underground goaf in summer is 22.47 hPa. The temperature difference and pressure difference between the surface and underground goaf of the working face in spring and autumn are not significantly different. ② The winter air leakage rate is relatively high, with an average maximum air leakage rate of 8.364 m/min. The air leakage rate in summer is relatively small, with an average maximum air leakage rate of 6.918 m/min. The air leakage rates in spring and autumn are not significantly different. ③ When close to the working face, the air leakage rate is relatively high. According to the vertical air leakage law on the surface, measures such as underground pressure equalization, sealing of inlet and outlet air corners, and surface crack coverage can be taken to ensure the safe mining of 122108 working face.
-
-
[1] 王炯,刘鹏,姜健,等. 切顶卸压沿空留巷回采工作面Y型通风漏风规律研究[J]. 采矿与安全工程学报,2021,38(3):625-633. WANG Jiong,LIU Peng,JIANG Jian,et al. Y-shaped ventilation air leakage law of working face of gob-side entry retaining by cutting roof to release pressure[J]. Journal of Mining & Safety Engineering,2021,38(3):625-633.
[2] 赵志超,郭春雨. 阻隔采空区漏风通道方法研究[J]. 中国煤炭,2022,48(增刊1):142-147. ZHAO Zhichao,GUO Chunyu. Study on a method for air leakage channel blocking in goaf[J]. China Coal,2022,48(S1):142-147.
[3] LI Jianwei,LI Xintian,LIU Changyou,et al. Study on the air leakage characteristics of a goaf in a shallow coal seam and spontaneous combustion prevention and control strategies for residual coal[J]. PLOS ONE,2022,17(6). DOI: 10.1371/journal.pone.0269822.
[4] 张岱岳,艾子博,李鹏. 浅埋煤层开采采空区漏风规律分析及治理研究[J]. 矿业安全与环保,2022,49(6):1-6,33. DOI: 10.19835/j.issn.1008-4495.2022.06.001 ZHANG Daiyue,AI Zibo,LI Peng. Analysis and governance of air leakage law in goaf of shallow coal seam mining[J]. Mining Safety & Environmental Protection,2022,49(6):1-6,33. DOI: 10.19835/j.issn.1008-4495.2022.06.001
[5] 王建文,张辛亥,李龙清,等. 塌陷裂隙漏风规律现场测定与分析[J]. 煤矿安全,2010,41(11):89-91. WANG Jianwen,ZHANG Xinhai,LI Longqing,et al. Field measurement and analysis of air leakage law of collapse fracture[J]. Safety in Coal Mines,2010,41(11):89-91.
[6] 秦波涛,高远,史全林,等. 近距离煤层复合采空区煤自燃综合防治技术[J]. 工矿自动化,2021,47(9):1-6,17. QIN Botao,GAO Yuan,SHI Quanlin,et al. Comprehensive prevention and control technology of coal spontaneous combustion in compound goaf of close distance coal seam[J]. Industry and Mine Automation,2021,47(9):1-6,17.
[7] 刘昆轮,常博,马祖杰,等. 自然风压作用下工作面采空区漏风特征研究[J]. 工矿自动化,2020,46(9):38-43. LIU Kunlun,CHANG Bo,MA Zujie,et al. Research on air leakage characteristics in goaf of working face under natural wind pressure[J]. Industry and Mine Automation,2020,46(9):38-43.
[8] TANG Mingyun,YAO Guanlin,QIN Ruxiang,et al. Numerical analysis of the influence of ventilation at working face on air leakage in gob[J]. Journal of Engineering Science and Technology Review,2018,11(6):54-61. DOI: 10.25103/jestr.116.08
[9] 管隆刚,马会云,罗肖,等. 小保当一号煤矿采空区垂直漏风规律研究[J]. 陕西煤炭,2023,42(2):91-94,119. DOI: 10.3969/j.issn.1671-749X.2023.02.020 GUAN Longgang,MA Huiyun,LUO Xiao,et al. Study on vertical air leakage law in goaf of Xiaobaodang No. 1 Coal Mine[J]. Shaanxi Coal,2023,42(2):91-94,119. DOI: 10.3969/j.issn.1671-749X.2023.02.020
[10] 文虎,赵阳,肖旸,等. 深井综放采空区漏风流场数值模拟及自燃危险区域划分[J]. 煤矿安全,2011,42(9):12-15. WEN Hu,ZHAO Yang,XIAO Yang,et al. Modeling of flow field and partition of spontaneous combustion danger zone in gob of fully mechanized caving face in deep coal mine[J]. Safety in Coal Mines,2011,42(9):12-15.
[11] 李建伟. 西部浅埋厚煤层高强度开采覆岩导气裂缝的时空演化机理及控制研究[D]. 徐州:中国矿业大学,2017. LI Jianwei. Spatial-temporal evolution mechanism and control technology of air leakage fissures in high-intensity mining of shallow thick coal seam[D]. Xuzhou:China University of Mining and Technology,2017.
[12] 邢震. 浅埋厚煤层地表漏风对采空区煤自燃影响数值模拟研究[J]. 工矿自动化,2021,47(2):80-87,103. XING Zhen. Numerical simulation study on the influence of surface air leakage in shallow thick coal seam on coal spontaneous combustion in goaf[J]. Industry and Mine Automation,2021,47(2):80-87,103.
[13] 张杰,张建辰,刘清洲,等. 浅埋综采工作面覆岩裂隙发育及漏风规律研究[J]. 煤炭工程,2021,53(3):118-123. ZHANG Jie,ZHANG Jianchen,LIU Qingzhou,et al. Crack development and air leakage law of overburden rock in shallow fully mechanized face[J]. Coal Engineering,2021,53(3):118-123.
[14] 刘思鑫,李洪先,王国芝,等. 基于SF6示踪试验的孤岛面采空区漏风规律研究[J]. 煤炭技术,2021,40(12):166-170. LIU Sixin,LI Hongxian,WANG Guozhi,et al. Study on leakage law of isolated island surface mining area based on SF6 tracer test[J]. Coal Technology,2021,40(12):166-170.
[15] 徐庶泽,王法凯. SF6示踪气体在新集二矿1上煤采空区漏风检测中的应用[J]. 煤矿机械,2018,39(2):116-119. XU Shuze,WANG Fakai. Application of SF6 in air leakage detection of goaf-a case in Xinji No. 2 Mine[J]. Coal Mine Machinery,2018,39(2):116-119.
[16] 赵启峰,何洪瑞,张建伟,等. 浅埋综放开采地表漏风对遗煤自燃的影响及治理[J]. 煤炭科学技术,2016,44(3):65-69. ZHAO Qifeng,HE Hongrui,ZHANG Jianwei,et al. Surface air leakage of fully-mechanized top coal caving mining in shallow depth seam affected to abandoned coal spontaneous combustion and control[J]. Coal Science and Technology,2016,44(3):65-69.
[17] 饶孜. SF6示踪气体漏风测试技术在白皎煤矿的应用[J]. 煤矿安全,2018,49(6):122-125. RAO Zi. Application of SF6 tracer gas leakage test technology in Baijiao Coal Mine[J]. Safety in Coal Mines,2018,49(6):122-125.
[18] 王超群,周明,郭英,等. 近距离煤层群采空区漏风规律及防控措施研究[J]. 矿业安全与环保,2020,47(2):81-84. DOI: 10.19835/j.issn.1008-4495.2020.02.016 WANG Chaoqun,ZHOU Ming,GUO Ying,et al. Study on the air leakage law and prevention and control measures in goaf of close-distance coal seam group[J]. Mining Safety and Environmental Protection,2020,47(2):81-84. DOI: 10.19835/j.issn.1008-4495.2020.02.016
[19] 郁亚楠,赵庆伟,程明,等. 特厚煤层孤岛面“呼吸效应”影响下煤自燃防控技术[J]. 西安科技大学学报,2022,42(1):76-82. DOI: 10.13800/j.cnki.xakjdxxb.2022.0111 YU Yanan,ZHAO Qingwei,CHENG Ming,et al. Prevention and control techniques against coal spontaneous combustion under the influence of "breathing effect" in isolated island working face of extra-thick coal seam[J]. Journal of Xi'an University of Science and Technology,2022,42(1):76-82. DOI: 10.13800/j.cnki.xakjdxxb.2022.0111
[20] 徐会军,刘江,徐金海. 浅埋薄基岩厚煤层综放工作面采空区漏风数值模拟[J]. 煤炭学报,2011,36(3):435-441. XU Huijun,LIU Jiang,XU Jinhai. Numerical simulation research on gob air leakage of shallow-buried thin bedrock thick coal seam with fully-mechanized top coal caving technology[J]. Journal of China Coal Society,2011,36(3):435-441.
[21] 郑力文,敖科,袁琴,等. 六氟化硫(SF6)标准物质的研制及其在油气田示踪剂定量分析中的应用[J]. 中国测试,2022,48(3):66-71. ZHENG Liwen,AO Ke,YUAN Qin,et al. Study on the reference material of sulfur hexafluoride (SF6) and application on quantitative analysis of oil-gas field tracer[J]. China Measurement & Test,2022,48(3):66-71.
-
期刊类型引用(4)
1. 杨玉冰. 电阻率CT探测在煤矿工作面顶板“四含”注浆改造评价中的应用. 工程建设与设计. 2024(11): 42-44 . 百度学术
2. 孙庆华,娄杰,胡鑫,谷超,孙强,张卫强. 基于电阻率响应的裂隙岩体粉煤灰注浆效果研究. 中国煤炭. 2024(10): 33-39 . 百度学术
3. 于远祥,沈鹏,张永亮,王有发. 动静组合荷载下隧道锚固围岩累积损伤效应与支护优化. 西安科技大学学报. 2024(06): 1095-1106 . 百度学术
4. 汪学明. 基于四电极测量原理的矿用高精度电导率传感器设计. 能源与环保. 2024(12): 211-216 . 百度学术
其他类型引用(0)