基于工业互联网的智能矿山灾害数字孪生研究

Research on intelligent mine disaster digital twin based on industrial Internet

  • 摘要: 煤矿灾害综合管控是智能矿山建设进程中需要重点解决的难题,借助数字孪生技术实现煤矿灾害的常态化管控是智能矿山建设的必然要求。从数字孪生内涵及本质出发,分析了数字孪生认识规律,并结合煤矿灾害数字孪生数据交互流程,提出了数字孪生技术在煤矿灾害研究中的应用模式:通过煤矿井下灾害监测传感器等设备进行实时监测,将监测数据通过边缘通信模块、云端通信模块上传至云端;数字孪生数值仿真软件部署在云端,利用传感器上传的监测数据作为初始条件参数、边界条件参数、效果验证参数,经过实时仿真分析,通过不断试错,寻求最佳的优化参数及解决方案;当技术手段在孪生世界应用成熟后,可用于对虚拟实体的最佳参数、解决方案等进行分析、判断、决策,并下发决策指令至井下执行器,控制灾害防治装备动作。从灾害监测方案优化、灾害预演及避灾路线精准规划、灾后救援方案制订及事故调查3个方面探讨了数字孪生赋能灾害预测性管控的实际应用。以工业互联网“云−管−边−端”架构为基础,构建了煤矿灾害数字孪生服务体系,并分析了面向矿山灾害的数字孪生关键技术,包括煤矿灾害智能感知和执行装备、煤矿灾害仿真软件、共性支撑技术,以期为数字孪生赋能智能矿山建设提供参考。

     

    Abstract: The comprehensive control of coal mine disasters is a key problem to be solved in the process of intelligent mine construction. It is an inevitable requirement for the construction of intelligent mines to realize the normalization control of coal mine disasters with the help of digital twin technology. Based on the connotation and essence of the digital twin, this paper analyzes the recognition rule of the digital twin and puts forward the application mode of digital twin technology in coal mine disaster research combining with data interactive process of mine disaster digital twin. Real-time monitoring is carried out by coal mine underground disaster monitoring sensor. The monitoring data is uploaded to the cloud through the edge communication module and cloud communication module. The digital twin numerical simulation software is deployed in the cloud. The monitoring data uploaded by the sensor is used as the initial condition parameter, boundary condition parameter and effect verification parameter. The best optimization parameters and solutions are sought through real-time simulation analysis and continuous trial and error. When the technical means are mature in the twin world, they can be used to analyze, judge and make decisions on the best parameters and solutions for virtual entities. The decision instructions can be sent to underground actuators to control the action of disaster prevention equipment. This paper discusses the practical application of digital twin enabling disaster predictive management and control from three aspects: disaster monitoring scheme optimization, disaster rehearsal and precise planning of disaster avoidance route, and post-disaster rescue scheme formulation and accident investigation. Based on the "cloud-pipe-edge-end" architecture of the industrial Internet, the digital twin service system for coal mine disasters is constructed. The key technologies of digital twin for mine disasters are analyzed. The technologies include intelligent sensing and execution equipment for coal mine disasters, simulation software for coal mine disasters and common support technologies. It is expected to provide reference for the construction of digital twin-enabling intelligent mines.

     

/

返回文章
返回