孔间电阻率监测在注浆效果检测的应用研究

王程, 李博凡, 吴璋, 鲁晶津

王程,李博凡,吴璋,等. 孔间电阻率监测在注浆效果检测的应用研究[J]. 工矿自动化,2023,49(10):127-132, 159. DOI: 10.13272/j.issn.1671-251x.2022110089
引用本文: 王程,李博凡,吴璋,等. 孔间电阻率监测在注浆效果检测的应用研究[J]. 工矿自动化,2023,49(10):127-132, 159. DOI: 10.13272/j.issn.1671-251x.2022110089
WANG Cheng, LI Bofan, WU Zhang, et al. Research on the application of inter hole resistivity monitoring in grouting effect detection[J]. Journal of Mine Automation,2023,49(10):127-132, 159. DOI: 10.13272/j.issn.1671-251x.2022110089
Citation: WANG Cheng, LI Bofan, WU Zhang, et al. Research on the application of inter hole resistivity monitoring in grouting effect detection[J]. Journal of Mine Automation,2023,49(10):127-132, 159. DOI: 10.13272/j.issn.1671-251x.2022110089

孔间电阻率监测在注浆效果检测的应用研究

基金项目: 陕西省自然科学基础研究计划(面上)项目(2023-JC-YB-271);天地科技股份有限公司科技创新创业资金专项资助项目(2020-TD-QN11)。
详细信息
    作者简介:

    王程(1986—),男,湖北荆州人,副研究员,研究方向为电磁法勘探,E-mail:wangchen@cctegxian.com

  • 中图分类号: TD265

Research on the application of inter hole resistivity monitoring in grouting effect detection

  • 摘要: 华北型煤田煤层底板岩溶水害防治的主要技术手段是对含水岩层进行注浆改造,目前注浆效果检测的手段主要是对注浆前后岩性特征进行分析,缺少对注浆全过程的跟踪动态监测,很难对注浆效果进行准确评价。针对上述问题,引入孔间电阻率监测系统对注浆改造岩层的电阻率变化特征进行全过程监测,以实现浆液扩散范围的精准探测。首先,采用改进电极和线缆装置将电阻率监测系统置于煤层底板长定向钻孔内,实现孔间的电阻率监测;然后,构建浆液扩散的地质模型,采用三维电阻率反演对模拟数据进行处理解释;最后,在煤矿井下注浆层位开展注浆全过程的孔间电阻率监测工程试验。模拟结果表明:孔间电阻率监测能识别浆液异常的扩散范围,根据电阻率随时间的变化趋势可推测浆液扩散范围,随着浆液逐渐扩散,异常区范围逐渐变大,异常强度逐渐增强。工程试验结果表明:通过钻孔将电阻率监测系统布置于注浆层位进行动态监测,监测数据经三维反演成像后能成功捕捉到浆液扩散导致的注浆层位电阻率变化特征,为煤矿注浆效果检测提供一种可行的技术方案。
    Abstract: The main technical means for preventing and controlling karst water damage in the coal seam floor of North China type coal fields are grouting transformation of the water-bearing rock layer. Currently, the main method for testing the grouting effect is to analyze the lithological features before and after grouting. There is a lack of tracking and dynamic monitoring of the entire grouting process, making it difficult to accurately evaluate the grouting effect. In order to solve the above problems, an inter hole resistivity monitoring system is introduced to monitor the entire process of resistivity changes in grouting transformed rock layers, in order to achieve precise detection of the slurry diffusion range. Firstly, an improved electrode and cable device is used to place the resistivity monitoring system in a long directional borehole on the coal seam floor, achieving resistivity monitoring between boreholes. Secondly, a geological model of slurry diffusion is constructed, and the simulated data is processed and interpreted using three-dimensional resistivity inversion. Finally, engineering tests are conducted on the inter hole resistivity monitoring of the entire grouting process at the injection layer underground in the coal mine. The simulation results indicate that inter hole resistivity monitoring can identify the diffusion range of slurry anomalies. Based on the trend of resistivity changes over time, the diffusion range of slurry can be inferred. As the slurry gradually diffuses, the range of anomalous areas gradually increases and the intensity of anomalies gradually increases. The engineering test results show that the resistivity monitoring system is arranged on the grouting layer through drilling for dynamic monitoring. After three-dimensional inversion imaging of the monitoring data, the features of resistivity changes in the grouting layer caused by slurry diffusion can be successfully captured. It provides a feasible technical solution for detecting the grouting effect in coal mines.
  • 我国华北区域煤炭开发的石炭系煤层正逐渐走向深部,由此煤层开发所面临的奥灰岩溶水威胁变得尤为突出[1]。采用长定向钻孔工艺对导、含水层进行超前区域注浆改造与加固是华北型煤田煤层底板岩溶水害防治的主要技术手段[2-3]

    煤矿注浆工程中,由于工艺和材料等因素可能造成注浆孔间盲区问题,所以有必要对注浆效果进行检测,以便发现盲区,消除隐患。目前针对注浆效果检测的手段还很有限,注浆检测技术理论也不成熟,注浆改造加固效果也没有一个明确的标准,如何对注浆效果进行正确有效的评价,成为煤矿注浆工程结束后亟需解决的难题[4]

    目前,针对注浆效果检测的方法主要有钻孔法、物探法等[5]。钻孔法方面:薛翊国等[6]采用钻孔取心、压水试验分析及注浆前后岩心力学实验分析进行注浆检测,取得了一定效果;刘世奇等[7]采用钻孔超声波检测注浆前后岩性岩体力学性质变化规律,通过弹性模量评价注浆效果。钻孔法直接高效,但造价较高,且由于地层存在不均匀性和各向异性会导致浆液扩散方向和范围具有不确定性,易导致安全隐患。物探法方面:李雁等[8]对破裂煤样注浆前后的裂隙结构进行了CT扫描;刘鑫明等[9]、刘恋等[10]在地面采用高密度电法检测浅层采空区注浆效果;齐飞等[11]、常青等[12]采用瞬变电磁法对注浆区域效果进行了检测;柴敬等[13]以温度为监测参量,引入光纤传感技术对被注介质内部浆液扩散范围和状态进行了监测;湛铠瑜等[14-16]采用动水注浆扩散、裂隙动水注浆模型对浆液扩散范围进行了试验,浆液扩散受水流流速、裂隙开度、注浆压力和浆液黏度的影响。物探法可探测浆液在钻孔周围的扩散范围,但由于工艺所限仅在注浆前后采集数据,定性地分析注浆效果,缺少对注浆全过程的跟踪动态监测,未得到注浆全过程的地层电性数据,很难对注浆效果进行准确评价。

    电阻率对化学浆液的运动具有很好的“可视化”再现和指示浆液渗流位置功能[17],在煤矿井下注浆层位全过程动态监测地层电阻率,是准确判断浆液扩散范围、评价导水断裂带注浆效果的关键。本文引入孔间电阻率监测系统对注浆改造岩层的电阻率变化特征进行全过程监测,以实现浆液扩散范围的精准探测。利用定向钻孔内布置的电阻率监测系统[18],采用孔间电阻率监测技术,获取注浆全过程注浆层位电阻率的监测数据,然后采用三维电阻率反演对监测数据进行处理解释,得到注浆层位岩性电阻率变化规律,从而推测浆液扩散范围。

    目前,煤矿工作面电阻率监测系统[19-20]被广泛应用于煤层底板采动破坏及导水通道发育过程的动态监测,该系统结构如图1所示。将电极及线缆埋入综采工作面两侧的巷道,监测主机置于2条巷道开口处,采用光端机将监测主机通过网络连接至井上控制服务器,在井上服务器通过采集操控软件对井下监测分站进行控制并采集数据,数据传输至井上服务器后由数据处理软件自动实现反演成像,采集系统的数据库与处理软件自动交互,传输与处理过程不需要人工干预,从而实现井下系统的无人化数据采集及数据初步分析。系统最大发射电压为105 V,最大发射电流为60 mA,发射频率为1~128 Hz,最小信号分辨率为5 μV,记录的工作参数为发射电流和接收电压信号。数据处理软件可实现开发数据库自动交互的数据实时处理,采用小波分析等技术对接收的电压信号进行预处理,并采用拟高斯−牛顿法进行三维反演及成像。

    图  1  工作面电阻率监测系统结构
    Figure  1.  Working face resistivity monitoring system architecture

    煤矿注浆改造工程一般为将煤层顶底板某一岩层通过注浆手段改造为稳定的隔水层,在工作面巷道内布置的电阻率监测收发装置纵向距离注浆位置达30~50 m,横向距离注浆位置最大达150 m,距离较远将导致精度降低,且在巷道中监测时易受巷道中各种设备和生产活动产生的电磁干扰,导致监测数据分辨率无法满足精细监测的需求。

    因此设计将电阻率监测系统布置于钻孔中,形成孔间电阻率监测系统,避开巷道中各种干扰源,且电极具备稳定不变的接地条件,从而获取更高分辨率的原始数据。孔间电阻率监测系统的网络和监测主机与巷道监测系统一致,监测测线布置不同:首先通过水力送线工艺[21],在长定向钻孔中送入电极和线缆,使电极等间距均匀平铺在定向钻孔中,然后在孔口将线缆接入监测主机,最后对定向钻孔进行注浆封孔,使每个电极与钻孔围岩接触较好。孔中线缆电极布置如图2所示,监测平面范围为2个孔之间扇形区域,监测的垂向范围与孔距有关,为30~60 m。

    图  2  孔中线缆电极布置
    Figure  2.  Cable electrode layout in the hole

    数据的正演通过数学模型计算得到其理论监测数据,数据的反演成像从监测数据中获取浆液扩散范围。正演采用有限体积法的离散偏微分方程,利用预条件双共轭梯度稳定算法对方程进行求解[22-23]

    $$ \left( {D{\boldsymbol{S}}\left( \sigma \right)G} \right){\boldsymbol{u}} = A\left( \sigma \right){\boldsymbol{u}} = {\boldsymbol{q}} $$ (1)

    式中:D为三维散度;$ {\boldsymbol{S}}\left( \sigma \right) $为包含电导率$ \sigma $的对角矩阵;G为梯度算子;u为电位向量;$ A\left( \sigma \right) $为正演算子;q为包含了正负电流源位置的源向量。

    采用拟高斯−牛顿法对采集的监测数据进行反演拟合,并用预条件共轭梯度法计算更新模型。则目标函数为

    $$ \varPhi \left( m \right) = \frac{1}{2}{\left\| {d\left( m \right) - {d_{{\rm{obs}}}}} \right\|^2} + \frac{\beta }{2}{\left\| {{\boldsymbol{W}}\left( {m - {m_{{\rm{ref}}}}} \right)} \right\|^2} $$ (2)

    式中:$ \varPhi \left( m \right) $为目标函数,m为反演迭代的模型,模型参数取$ \ln \sigma $;$ d\left( m \right) $为确定模型正演计算所得的数据;$ {d_{{\rm{obs}}}} $为观测的电压除以发射电流所得的数据;$ \beta $为正则化参数;W为模型正则化矩阵;$ {m_{{\rm{ref}}}} $为参考模型。

    浆液通过钻孔注入地层后,将降低地层的电阻率,并充填地层的原始裂隙。为研究孔间电阻率监测系统对注浆过程中地层电阻率变化规律的分辨能力,分析电阻率变化范围与浆液扩散范围之间的关系,同时给予实际工程理论支持和测线布置指导,开展注浆过程的数值模拟。

    注浆工程电阻率监测模型如图3所示,孔1和孔2为监测施工孔,夹角30°,孔长480 m,为避免套管影响,距孔口80 m处开始布设电极,电极间距为20 m,共布设42个电极。孔3为注浆孔,假设浆液在破裂点处向四周均匀扩散,形成一个球状异常体。

    图  3  注浆工程电阻率监测模型
    Figure  3.  Resistivity monitoring model of grouting engineering

    以孔口为坐标原点,以钻孔所在的平面为xy平面,以孔1方向为x方向,建立坐标系。球状异常体中心位置为(250,80,0) m,浆液电阻率为20 Ω·m,地层电阻率为100 Ω·m。随着浆液注入,球状异常体模型半径从0逐渐增大至30 m,分别选取半径为10,20,30 m的模拟监测数据进行反演成像, 浆液扩散范围的孔间电阻率监测反演成像如图4所示,图中红色虚线的圆圈为浆液扩散范围。可看出浆液扩散的位置存在低阻异常区(蓝色区域),在x方向上浆液扩散范围与模型参数基本吻合,在y方向上与模型参数有偏差。随着浆液逐渐扩散,低阻异常区范围逐渐变大,低阻异常强度逐渐增强。通过对注浆过程的数值模拟,表明采用孔间电阻率监测技术能够较为准确地圈定浆液扩散范围。

    图  4  浆液扩散范围的孔间电阻率监测反演成像
    Figure  4.  Inter hole resistivity monitoring for slurry diffusion range inversion imaging

    某煤矿位于准格尔煤田中东部,目前主要综放开采石炭–二叠系太原组均厚为 18.93 m 的 6 号煤层,间接充水水源为煤层底板富水性中等、强的奥陶系岩溶裂隙含水层地下水(底板隔水层厚为 30~80 m,6 号煤带水压为0.7~1.5 MPa)。井田范围内落差大于 5 m 的断层和其他构造较为发育,导致奥陶系灰岩水可能通过构造涌入矿井,形成底板突水的水害问题[22]

    煤层底板定向钻孔实施位置位于煤矿61304工作面辅助运输巷6号调车硐室,计划施工3个主孔,其中1号孔和4号孔为单独主孔,3号孔为1个主孔,其2个分支孔分别为3−1号和3−2号孔,钻孔水平钻进层位为煤层底板下35 m中砂岩,布置如图5所示。

    图  5  定向钻孔及孔间电阻率监测布置
    Figure  5.  Directional holes and inter hole resistivity monitoring layout

    通过定向钻孔结果发现在Y6异常区大部分区域内岩性、层位、水量正常,基本排除了Y6异常区内存在大型“陷落柱”的情况。为进一步消除区域内可能存在小型断裂带,对上述钻孔进行注浆封孔,并开展注浆效果检测,监测浆液扩散范围。

    根据定向钻孔方案,在1号孔和4号孔中布置孔间电阻率监测系统,采用定向钻机将线缆推送至孔内,然后进行注浆封孔。注浆完成后,通过测试每个电极的发射电流判断电极接地情况。

    本次采用的电极间距为20 m,布置见图5中的黑色圆点,2个钻孔共布置34个电极。收发装置采用偶极−偶极,1号孔和4号孔交替收发,共监测12 d,平均每天采集有效数据5组,相比巷道监测系统,孔中监测收发电极不受巷道中各种因素干扰,发射电流稳定,发射电流均大于45 mA,接收电压均大于500 μV,监测1号孔和4号孔间岩层电阻率动态变化过程。

    采用三维电阻率反演对监测数据进行处理成像,煤层底板下30 m注浆层位的电阻率反演成像结果如图6所示。

    图  6  底板下30 m层位电阻率监测反演成像
    Figure  6.  Inverse imaging of resistivity monitoring at 30 m horizon under the floor

    图6(a)可看出,在未进行注浆时,电阻率稳定在120~150 $ {\Omega }\cdot \mathrm{m} $之间,未发现明显蓝绿色的低阻异常区,与钻孔结果一致;当向1号孔注浆116 t后,浆液水灰比为3∶1,注浆压力为6 MPa,在1号孔底旁侧岩层电阻率下降为50~90 $ {\Omega }\cdot \mathrm{m} $,命名为J1低阻异常区;向3−1号孔注浆20 t后,浆液水灰比为3∶1,注浆压力为6 MPa,在3−1号孔四周发现岩层电阻率下降为80~110 $ {\Omega }\cdot \mathrm{m} $,命名为J2低阻异常区。

    根据孔间电阻率监测成果,推测J1和J2低阻异常区分别为1号和3−1号孔的浆液扩散区:1号孔浆液扩散x方向80~130 m、y方向300~330 m,3−1号孔浆液扩散x方向150~230 m、y方向200~270 m,均超过理论模拟的扩散半径10 m[23],说明定向钻孔附近存在裂隙。根据低阻异常区推测3−1号孔附近裂隙较1号孔附近裂隙平面范围较大。

    为验证孔间电阻率监测系统监测浆液扩散范围的准确性,分别在运输巷和切眼进行打钻验证。在运输巷对J1低阻异常区进行打钻取心,发现异常区存在浆液水泥块,异常区外岩性正常。在J2低阻异常区内进行打钻取心,经施工穿层孔取心发现J2低阻异常区内存在水泥块,3−1号孔注浆浆液集中在J2低阻异常区附近。经验证,孔间电阻率监测发现低阻区与注浆浆液扩散范围基本一致。

    1) 注浆浆液扩散过程数值模拟结果表明:孔间电阻率监测三维反演成像能识别浆液异常的扩散范围;根据电阻率随时间的变化趋势可推测浆液扩散范围,随着浆液逐渐扩散,异常区范围逐渐变大,异常强度逐渐增强。

    2) 通过煤层底板长定向钻孔孔间电阻率监测试验表明:采用孔间电阻率监测系统对注浆区域内的岩层进行电阻率动态监测,通过对监测数据的电阻率三维反演成像推测了注浆浆液扩散范围,经打钻验证了推测的准确性。

    3) 本次监测试验的2条测线均位于煤层底板下35 m层位,采集的数据严格意义上仍为二维数据体,导致垂向分辨率较低,需增加采集数据维度和数量或结合其他手段,可进一步提高解释的精度。

  • 图  1   工作面电阻率监测系统结构

    Figure  1.   Working face resistivity monitoring system architecture

    图  2   孔中线缆电极布置

    Figure  2.   Cable electrode layout in the hole

    图  3   注浆工程电阻率监测模型

    Figure  3.   Resistivity monitoring model of grouting engineering

    图  4   浆液扩散范围的孔间电阻率监测反演成像

    Figure  4.   Inter hole resistivity monitoring for slurry diffusion range inversion imaging

    图  5   定向钻孔及孔间电阻率监测布置

    Figure  5.   Directional holes and inter hole resistivity monitoring layout

    图  6   底板下30 m层位电阻率监测反演成像

    Figure  6.   Inverse imaging of resistivity monitoring at 30 m horizon under the floor

  • [1] 虎维岳. 深部煤炭开采地质安全保障技术现状与研究方向[J]. 煤炭科学技术,2013,41(8):1-5,14.

    HU Weiyue. Study orientation and present status of geological guarantee technologies to deep mine coal mining[J]. Coal Science and Technology,2013,41(8):1-5,14.

    [2] 虎维岳,赵春虎,吕汉江. 煤层底板水害区域注浆治理影响因素分析与高效布孔方式[J]. 煤田地质与勘探,2022,50(11):134-143. DOI: 10.12363/issn.1001-1986.22.04.0279

    HU Weiyue,ZHAO Chunhu,LYU Hanjiang. Main influencing factors for regional pre-grouting technology of water hazard treatment in coal seam floor and efficient hole arrangement[J]. Coal Geology & Exploration,2022,50(11):134-143. DOI: 10.12363/issn.1001-1986.22.04.0279

    [3] 刘明军,王钢,崔岩波. 准格尔矿区井下水害区域超前探查防治技术[J]. 煤炭工程,2021,53(8):70-74.

    LIU Mingjun,WANG Gang,CUI Yanbo. Advance detection and prevention technology against water hazard in underground mine of Junger Coalfield[J]. Coal Engineering,2021,53(8):70-74.

    [4] 邢茂林,郑士田,石志远,等. 注浆改造厚含水砂层提高开采上限技术及应用[J]. 煤田地质与勘探,2023,51(5):113-122.

    XING Maolin,ZHENG Shitian,SHI Zhiyuan,et al. Technology of raising upper limit of mining by grouting reconstruction in thick water-bearing sand layer and its application[J]. Coal Geology & Exploration,2023,51(5):113-122.

    [5] 刘小平,李姗,刘新星,等. 煤矿采空区注浆治理工后质量检测技术与实践[J]. 煤田地质与勘探,2020,48(5):113-122.

    LIU Xiaoping,LI Shan,LIU Xinxing,et al. Method and practice of quality test after grouting in coal mine goaf[J]. Coal Geology & Exploration,2020,48(5):113-122.

    [6] 薛翊国,李术才,苏茂鑫,等. 青岛胶州湾海底隧道涌水断层注浆效果综合检验方法研究[J]. 岩石力学与工程学报,2011,30(7):1382-1388.

    XUE Yiguo,LI Shucai,SU Maoxin,et al. Study of comprehensive test method for grouting effect of water filling fault in Qingdao Kiaochow bay subsea tunnel[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(7):1382-1388.

    [7] 刘世奇,许延春,费宇,等. 声波检测技术在裂隙岩体注浆加固工程质量检测中的应用[J]. 西安科技大学学报,2018,38(3):396-402.

    LIU Shiqi,XU Yanchun,FEI Yu,et al. Application of ultrasonic testing technology to quality inspection of grouting reinforcement in fractured rock mass[J]. Journal of Xi'an University of Science and Technology,2018,38(3):396-402.

    [8] 李雁,李兵,姚帅,等. 基于CT扫描的受载破裂煤样注浆封堵效应量化研究[J]. 工矿自动化,2022,48(4):53-59.

    LI Yan,LI Bing,YAO Shuai,et al. Quantitative study on grouting plugging effect of loaded fractured coal sample based on CT scanning[J]. Journal of Mine Automation,2022,48(4):53-59.

    [9] 刘鑫明,刘树才,姜志海,等. 电阻率三维反演中加权光滑因子的影响及注浆检测应用[J]. 中国矿业大学学报,2013,42(1):88-92.

    LIU Xinming,LIU Shucai,JIANG Zhihai,et al. Weighted smooth factor impact on 3D DC resistivity inversion and application in grouting effect detection[J]. Journal of China University of Mining & Technology,2013,42(1):88-92.

    [10] 刘恋,魏名地,臧公瑾. 高密度电法在煤矿采空区注浆检测中的应用[J]. 煤炭技术,2017,36(7):197-198.

    LIU Lian,WEI Mingdi,ZANG Gongjin. Application of high density resistivity method in grouting detection in old coal mining area[J]. Coal Technology,2017,36(7):197-198.

    [11] 齐飞,杨帅. 物探技术在煤矿注浆堵水工程中的应用研究[J]. 煤炭工程,2019,51(增刊1):88-92.

    QI Fei,YANG Shuai. Application of geophysical prospecting technology in coal mine grouting and water blocking project[J]. Coal Engineering,2019,51(S1):88-92.

    [12] 常青,郭伟. 瞬变电磁在煤矿突涌水预报及注浆中的靶向定位研究[J]. 煤炭技术,2017,36(9):174-176.

    CHANG Qing,GUO Wei. Transient wlectromagnetic detection in outburst water prediction and grouting target location in coal mine[J]. Coal Technology,2017,36(9):174-176.

    [13] 柴敬,周余,欧阳一博,等. 基于光纤监测的注浆浆液扩散范围试验研究[J]. 中国矿业大学学报,2022,51(6):1045-1055. DOI: 10.13247/j.cnki.jcumt.001450

    CHAI Jing,ZHOU Yu,OUYANG Yibo,et al. Experimental study of diffusion range of grouting slurry based on optical fiber monitoring[J]. Journal of China University of Mining & Technology,2022,51(6):1045-1055. DOI: 10.13247/j.cnki.jcumt.001450

    [14] 湛铠瑜,隋旺华. 动水条件下单裂隙注浆模型试验系统设计[J]. 实验室研究与探索,2011,30(10):19-23,67. DOI: 10.3969/j.issn.1006-7167.2011.10.006

    ZHAN Kaiyu,SUI Wanghua. Design of model test system for grouting into a single fracture with flowing water[J]. Research and Exploration in Laboratory,2011,30(10):19-23,67. DOI: 10.3969/j.issn.1006-7167.2011.10.006

    [15] 湛铠瑜,隋旺华,高岳. 单一裂隙动水注浆扩散模型[J]. 岩土力学,2011,32(6):1659-1663,1689. DOI: 10.3969/j.issn.1000-7598.2011.06.011

    ZHAN Kaiyu,SUI Wanghua,GAO Yue. A model for grouting into single fracture with flowing water[J]. Rock and Soil Mechanics,2011,32(6):1659-1663,1689. DOI: 10.3969/j.issn.1000-7598.2011.06.011

    [16] 湛铠瑜,隋旺华,王文学. 裂隙动水注浆渗流压力与注浆堵水效果的相关分析[J]. 岩土力学,2012,33(9):2650-2655,2662.

    ZHAN Kaiyu,SUI Wanghua,WANG Wenxue. Correlation analysis of seepage pressure and water plugging effect during grouting into a fracture with flowing water[J]. Rock and Soil Mechanics,2012,33(9):2650-2655,2662.

    [17] 姜春露,姜振泉,刘盛东,等. 多孔岩石化学注浆过程中视电阻率变化试验[J]. 中南大学学报(自然科学版),2013,44(10):4202-4207.

    JIANG Chunlu,JIANG Zhenquan,LIU Shengdong,et al. Experiment on apparent resistivity changes in porous rock chemical grouting process[J]. Journal of Central South University(Science and Technology),2013,44(10):4202-4207.

    [18] 靳德武,乔伟,李鹏,等. 煤矿防治水智能化技术与装备研究现状及展望[J]. 煤炭科学技术,2019,47(3):10-17.

    JIN Dewu,QIAO Wei,LI Peng,et al. Research status and prospects on intelligent technology and equipment for mine water hazard prevention and control[J]. Coal Science and Technology,2019,47(3):10-17.

    [19] 王冰纯,鲁晶津,房哲. 基于伪随机序列的矿井电法监测系统[J]. 煤矿安全,2018,49(12):118-121.

    WANG Bingchun,LU Jingjin,FANG Zhe. Research on mine electrical monitoring system based on pseudo-random sequence[J]. Safety in Coal Mines,2018,49(12):118-121.

    [20] 鲁晶津,王冰纯,李德山. 回采工作面电阻率监测技术与装备[C]. 中国地球科学联合学术年会,北京,2018:8-9.

    LU Jingjin,WANG Bingchun,LI Deshan. Resistivity monitoring technology and equipment for mining face[C]. Annual Meeting of Chinese Geoscience Union(CGU),Beijing,2018:8-9.

    [21] 鲁晶津. 直流电阻率法在煤层底板水害监测中的应用研究[J]. 工矿自动化,2021,47(2):18-25.

    LU Jingjin. Research on the application of direct current resistivity method in coal seam floor water inrush monitoring[J]. Industry and Mine Automation,2021,47(2):18-25.

    [22] 虎维岳,赵春虎. 基于充水要素的矿井水害类型三线图划分方法[J]. 煤田地质与勘探,2019,47(5):1-8. DOI: 10.3969/j.issn.1001-1986.2019.05.001

    HU Weiyue,ZHAO Chunhu. Trilinear chart classification method of mine water hazard type based on factors of water recharge[J]. Coal Geology & Exploration,2019,47(5):1-8. DOI: 10.3969/j.issn.1001-1986.2019.05.001

    [23] 谷拴成,孙冠临,苏培莉,等. 岩体裂隙动水注浆扩散半径影响试验[J]. 煤田地质与勘探,2019,47(5):144-149.

    GU Shuancheng,SUN Guanlin,SU Peili,et al. Test of the influence of dynamic water grouting diffusion radius of fractures in rock[J]. Coal Geology & Exploration,2019,47(5):144-149.

  • 期刊类型引用(4)

    1. 杨玉冰. 电阻率CT探测在煤矿工作面顶板“四含”注浆改造评价中的应用. 工程建设与设计. 2024(11): 42-44 . 百度学术
    2. 孙庆华,娄杰,胡鑫,谷超,孙强,张卫强. 基于电阻率响应的裂隙岩体粉煤灰注浆效果研究. 中国煤炭. 2024(10): 33-39 . 百度学术
    3. 于远祥,沈鹏,张永亮,王有发. 动静组合荷载下隧道锚固围岩累积损伤效应与支护优化. 西安科技大学学报. 2024(06): 1095-1106 . 百度学术
    4. 汪学明. 基于四电极测量原理的矿用高精度电导率传感器设计. 能源与环保. 2024(12): 211-216 . 百度学术

    其他类型引用(0)

图(6)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  55
  • PDF下载量:  27
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-11-23
  • 修回日期:  2023-10-17
  • 网络出版日期:  2023-10-22
  • 刊出日期:  2023-10-24

目录

/

返回文章
返回