半波振子结构在井下5G辐射场中的安全性分析

田子建, 降滉舟, 常琳, 刘斌, 王文清

田子建,降滉舟,常琳,等. 半波振子结构在井下5G辐射场中的安全性分析[J]. 工矿自动化,2023,49(6):159-167. DOI: 10.13272/j.issn.1671-251x.2022100092
引用本文: 田子建,降滉舟,常琳,等. 半波振子结构在井下5G辐射场中的安全性分析[J]. 工矿自动化,2023,49(6):159-167. DOI: 10.13272/j.issn.1671-251x.2022100092
TIAN Zijian, JIANG Huangzhou, CHANG Lin, et al. Safety analysis of half wave oscillator structure in underground 5G radiation field[J]. Journal of Mine Automation,2023,49(6):159-167. DOI: 10.13272/j.issn.1671-251x.2022100092
Citation: TIAN Zijian, JIANG Huangzhou, CHANG Lin, et al. Safety analysis of half wave oscillator structure in underground 5G radiation field[J]. Journal of Mine Automation,2023,49(6):159-167. DOI: 10.13272/j.issn.1671-251x.2022100092

半波振子结构在井下5G辐射场中的安全性分析

基金项目: 国家自然科学基金资助项目(52074305);北京市教委双高建设技术技能创新服务平台及团队建设项目(1106022512)。
详细信息
    作者简介:

    田子建(1964—),男,湖南望城人,教授,博士,博士研究生导师,主要研究方向为矿井监控与通信,E-mail:13911550940@126.com

    通讯作者:

    降滉舟(1996—),男,山西忻州人,硕士研究生,主要研究方向为矿井监控与通信,E-mail:1335242064@qq.com

  • 中图分类号: TD655

Safety analysis of half wave oscillator structure in underground 5G radiation field

  • 摘要: GB 3836.1−2021《爆炸性环境 第1部分 设备 通用要求》规定,爆炸性环境中射频设备的射频阈功率不得大于6 W,该规定引自欧盟标准,缺乏试验验证,严重制约了5G技术在煤井下的应用。为了重新评价矿井5G通信设备辐射电磁波能量的安全性,分析得出金属结构耦合电磁波产生放电的形式应为低压分断电路电弧放电;分析了金属结构耦合电磁波产生的放电能量,选择最易耦合电磁波的半波振子结构为研究对象,通过比较得出等效半波振子等价直流放电电路产生的放电能量大于等价高频放电电路产生的放电能量,从而将分析金属结构耦合电磁波放电的安全性转换为分析金属结构的等效半波振子天线等价直流放电电路的安全性。选择直流本安电路的安全性判别原则来判断等效半波振子等价直流放电电路的安全性,通过计算放电功率和能量,得出5G射频设备辐射功率不大于10.5 W时,将不会点燃爆炸性的瓦斯气体,因此,可将5G通信系统射频基站的安全辐射功率提高到10.5 W。
    Abstract: GB 3836.1-2021 Explosive atmospheres - Part 1: Equipment-General requirements stipulates that the RF threshold power of RF equipment in explosive environments shall not exceed 6 W. This regulation is derived from EU standards and lacks experimental verification, seriously restricting the application of 5G technology in mines. In order to reassess the safety of electromagnetic wave energy radiated by 5G communication equipment in mines, it is analyzed that the form of discharge generated by metal structures coupling electromagnetic waves should be low voltage breaking circuit arc discharge. The discharge energy generated by metal structures coupling electromagnetic waves is analyzed. The half wave oscillator structure that is most easily coupling with electromagnetic waves is selected as the research object. Through comparison, it is found that the discharge energy generated by the equivalent DC discharge circuit equivalent half wave oscillator is greater than that generated by the equivalent high-frequency discharge circuit. Therefore, the analysis of the safety of metal structure coupling electromagnetic wave discharge can be transformed into the analysis of the safety of the equivalent DC discharge circuit of equivalent half wave oscillator antenna of the metal structure. The safety judgment principle of intrinsically safe DC circuit is selected to judge the safety of the equivalent DC discharge circuit of equivalent half wave oscillator . By calculating the discharge power and energy, it is concluded that 5G RF equipment will not ignite explosive gas when its radiated power is not greater than 10.5 W. Therefore, the safe radiated power of RF base station of 5G communication system can be increased to 10.5 W.
  • 图  1   金属结构耦合电磁波

    Figure  1.   Metal structure coupled electromagnetic wave

    图  2   金属结构放电等效电路

    Figure  2.   Discharge equivalent circuit of metal structure

    图  3   高频交流放电等效电路

    Figure  3.   High-frequency AC discharge equivalent circuit

    图  4   直流放电等效电路

    Figure  4.   DC discharge equivalent circuit

    图  5   金属结构放电仿真模型

    Figure  5.   Simulation model of metal structure discharge

    图  6   金属振子随时间变化

    Figure  6.   Metal oscillator changes over time

    图  7   高频放电的间隙电压

    Figure  7.   Gap voltage of high-frequency discharge

    图  8   直流与高频放电间隙电压差值

    Figure  8.   Gap voltage difference between DC and high-frequency discharge

  • [1] 孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化,2019,45(10):1-4.

    SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4.

    [2] 霍振龙,张袁浩. 5G通信技术及其在煤矿的应用构想[J]. 工矿自动化,2020,46(3):1-5.

    HUO Zhenlong,ZHANG Yuanhao. 5G communication technology and its application conception in coal mine[J]. Industry and Mine Automation,2020,46(3):1-5.

    [3] 孙继平. 煤矿信息化与自动化发展趋势[J]. 工矿自动化,2015,41(4):1-5.

    SUN Jiping. Development trend of coal mine informatization and automation[J]. Industry and Mine Automation,2015,41(4):1-5.

    [4] 孙继平. 煤矿信息化自动化新技术与发展[J]. 煤炭科学技术,2016,44(1):19-23,83.

    SUN Jiping. New technology and development of mine informatization and automation[J]. Coal Science and Technology,2016,44(1):19-23,83.

    [5] 赵国瑞. 煤矿智能开采初级阶段问题分析与5G应用关键技术[J]. 煤炭科学技术,2020,48(7):161-167.

    ZHAO Guorui. Analysis of problems in primary stage of intelligent coal mining and key technology of 5G application[J]. Coal Science and Technology,2020,48(7):161-167.

    [6] 孙继平. 煤矿信息化与智能化要求与关键技术[J]. 煤炭科学技术,2014,42(9):22-25,71.

    SUN Jiping. Requirement and key technology on mine informationalization and intelligent technology[J]. Coal Science and Technology,2014,42(9):22-25,71.

    [7]

    BS 6656: 2002 Assessment of inadvertent ignition of flammable atmospheres by radio-frequency radiation-Guide[S].

    [8] GB 3836.1−2021 爆炸性环境 第1部分: 设备 通用要求[S].

    GB 3836.1-2021 Explosive atmospheres-Part1: Equipment-General requirements[S].

    [9] 国家安全生产监督管理总局. 煤矿安全规程[M]. 北京: 煤炭工业出版社, 2022.

    State Administration of Work Safety. Coal mine safety regulations[M]. Beijing: China Coal Industry Publishing House, 2022.

    [10] 李静. 电磁场对瓦斯爆炸过程中火焰和爆炸波的影响[J]. 煤炭学报,2008,33(1):51-54.

    LI Jing. Influence of electromagnetism field on the flame transmission and shock wave in gas explosion[J]. Journal of China Coal Society,2008,33(1):51-54.

    [11] 彭霞. 矿井电磁波辐射能量对瓦斯安全性的影响[J]. 煤炭学报,2013,38(4):542-547.

    PENG Xia. Electromagnetic wave radiation energy influences on safety of gas in coal mine[J]. Journal of China Coal Society,2013,38(4):542-547.

    [12] 孙继平,贾倪. 矿井电磁波能量安全性研究[J]. 中国矿业大学学报,2013,42(6):1002-1008.

    SUN Jiping,JIA Ni. Safety study of electromagnetic wave energy in coal mine[J]. Journal of China University of Mining and Technology,2013,42(6):1002-1008.

    [13] 刘晓阳,马新彦,田子建,等. 井下金属结构等效接收天线的放电火花安全性研究[J]. 工矿自动化,2021,47(9):126-130.

    LIU Xiaoyang,MA Xinyan,TIAN Zijian,et al. Research on discharge spark safety of equivalent receiving antenna of underground metal structure[J]. Industry and Mine Automation,2021,47(9):126-130.

    [14] 范思涵,杨维,刘俊波. 井下金属结构近场耦合大环发射天线电磁波能量安全性分析[J]. 工矿自动化,2022,48(6):118-127.

    FAN Sihan,YANG Wei,LIU Junbo. Analysis of electromagnetic wave energy safety of underground metal structure near-field coupled large loop transmitting antenna[J]. Journal of Mine Automation,2022,48(6):118-127.

    [15] 梁伟锋,孙继平,彭铭,等. 煤矿井下无线电波防爆安全功率阈值研究[J]. 工矿自动化,2022,48(12):123-128,163.

    LIANG Weifeng,SUN Jiping,PENG Ming,et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128,163.

    [16] 孙继平,彭铭,潘涛,等. 无线电波防爆安全阈值研究[J]. 工矿自动化,2023,49(2):1-5.

    SUN Jiping,PENG Ming,PAN Tao,et al. Research on the safety threshold of radio wave explosion-proof[J]. Journal of Mine Automation,2023,49(2):1-5.

    [17] 张勇. 煤矿井下无线射频近场谐振耦合防爆电磁能仿真分析[J]. 煤矿安全,2022,53(8):134-138.

    ZHANG Yong. Simulation analysis of explosion-proof electromagnetic energy coupled with radio frequency near field resonance in underground coal mine[J]. Safety in Coal Mines,2022,53(8):134-138.

    [18] 李褚益. 微波技术与微波电路[M]. 广州: 华南理工大学出版社, 2007.

    LI Chuyi. Microwave technology and microwave circuits[M]. Guangzhou: South China University of Technology Press, 2007.

    [19] 钟顺时. 天线理论与技术[M]. 2版. 北京: 电子工业出版社, 2015.

    ZHONG Shunshi. Antenna theory and techniques[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2015.

    [20] 徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996.

    XU Xueji, ZHU Dingchang. Gas discharge physics[M]. Shanghai: Fudan University Press, 1996.

    [21] 刘建华. 爆炸性气体环境下本质安全电路放电理论及非爆炸评价方法的研究[D]. 徐州: 中国矿业大学, 2008.

    LIU Jianhua. A study on discharge theory and non-explosion evaluating method of the intrinsically safe circuits for explosive atmospheres[D]. Xuzhou: China University of Mining and Technology, 2008.

    [22] 赵永秀,刘树林,马一博. 爆炸性试验电感电路分断放电特性分析与建模[J]. 煤炭学报,2015,40(7):1698-1704.

    ZHAO Yongxiu,LIU Shulin,MA Yibo. Analysis and modeling of inductor-disconnected-discharged characteristics based on explosive test[J]. Journal of China Coal Society,2015,40(7):1698-1704.

    [23] 孙继平. 屯兰煤矿“2·22”特别重大瓦斯爆炸事故原因及教训[J]. 煤炭学报,2010,35(1):72-75.

    SUN Jiping. The causes and lessons of "2·22" gas explosion disaster at Tunlan Coal Mine[J]. Journal of China Coal Society,2010,35(1):72-75.

    [24] GB 3836.4−2021 爆炸性环境 第4部分: 由本质安全型“i”保护的设备[S].

    GB 3836.4-2021 Explosive atmospheres-Part4: Equipment protection by intrinsic safety "i"[S].

    [25] 赵永秀,晏铭,王骑. Buck-Boost变换器内部分断放电引燃能力及评价方法[J]. 西安科技大学学报,2022,42(1):160-167.

    ZHAO Yongxiu,YAN Ming,WANG Qi. Ignition capability and evaluation method of inner disconnected discharge in Buck-Boost converter[J]. Journal of Xi'an University of Science and Technology,2022,42(1):160-167.

  • 期刊类型引用(7)

    1. 乔国栋,刘泽功,高魁,周云权,傅师贵. 切缝药包超前预裂爆破厚硬顶板矿压与瓦斯综合防治试验研究. 中国矿业大学学报. 2024(02): 334-345+376 . 百度学术
    2. 韩帅杰. 近距离煤层群采空区下回采巷道合理布置研究. 煤矿现代化. 2022(02): 1-5 . 百度学术
    3. 秦阳,赵凯,崔广甲,臧涛. 基于深孔预裂爆破的坚硬顶板卸压研究. 煤炭技术. 2022(05): 31-34 . 百度学术
    4. 杨科,刘文杰,李志华,刘钦节,池小楼,魏祯. 厚硬顶板下大倾角软煤开采灾变机制与防控技术. 煤炭科学技术. 2021(02): 12-20 . 百度学术
    5. 崔广甲,秦阳,臧涛,赵凯. 坚硬顶板预裂爆破模拟分析与研究. 山西煤炭. 2021(02): 74-78 . 百度学术
    6. 李强,吴桂义,孔德中. 近距离煤层群重复采动下端面冒顶影响因素分析及防治. 工矿自动化. 2021(08): 41-49 . 本站查看
    7. 王聪. 综采工作面厚硬顶板预裂爆破技术研究. 矿业装备. 2021(05): 108-109 . 百度学术

    其他类型引用(7)

图(8)
计量
  • 文章访问数:  974
  • HTML全文浏览量:  44
  • PDF下载量:  33
  • 被引次数: 14
出版历程
  • 收稿日期:  2022-10-30
  • 修回日期:  2023-05-24
  • 网络出版日期:  2023-06-18
  • 刊出日期:  2023-06-24

目录

    /

    返回文章
    返回