[1] |
孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化,2019,45(10):1-4.SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4.
|
[2] |
霍振龙,张袁浩. 5G通信技术及其在煤矿的应用构想[J]. 工矿自动化,2020,46(3):1-5.HUO Zhenlong,ZHANG Yuanhao. 5G communication technology and its application conception in coal mine[J]. Industry and Mine Automation,2020,46(3):1-5.
|
[3] |
孙继平. 煤矿信息化与自动化发展趋势[J]. 工矿自动化,2015,41(4):1-5.SUN Jiping. Development trend of coal mine informatization and automation[J]. Industry and Mine Automation,2015,41(4):1-5.
|
[4] |
孙继平. 煤矿信息化自动化新技术与发展[J]. 煤炭科学技术,2016,44(1):19-23,83.SUN Jiping. New technology and development of mine informatization and automation[J]. Coal Science and Technology,2016,44(1):19-23,83.
|
[5] |
赵国瑞. 煤矿智能开采初级阶段问题分析与5G应用关键技术[J]. 煤炭科学技术,2020,48(7):161-167.ZHAO Guorui. Analysis of problems in primary stage of intelligent coal mining and key technology of 5G application[J]. Coal Science and Technology,2020,48(7):161-167.
|
[6] |
孙继平. 煤矿信息化与智能化要求与关键技术[J]. 煤炭科学技术,2014,42(9):22-25,71.SUN Jiping. Requirement and key technology on mine informationalization and intelligent technology[J]. Coal Science and Technology,2014,42(9):22-25,71.
|
[7] |
BS 6656: 2002 Assessment of inadvertent ignition of flammable atmospheres by radio-frequency radiation-Guide[S].
|
[8] |
GB 3836.1−2021 爆炸性环境 第1部分: 设备 通用要求[S].GB 3836.1-2021 Explosive atmospheres-Part1: Equipment-General requirements[S].
|
[9] |
国家安全生产监督管理总局. 煤矿安全规程[M]. 北京: 煤炭工业出版社, 2022.State Administration of Work Safety. Coal mine safety regulations[M]. Beijing: China Coal Industry Publishing House, 2022.
|
[10] |
李静. 电磁场对瓦斯爆炸过程中火焰和爆炸波的影响[J]. 煤炭学报,2008,33(1):51-54.LI Jing. Influence of electromagnetism field on the flame transmission and shock wave in gas explosion[J]. Journal of China Coal Society,2008,33(1):51-54.
|
[11] |
彭霞. 矿井电磁波辐射能量对瓦斯安全性的影响[J]. 煤炭学报,2013,38(4):542-547.PENG Xia. Electromagnetic wave radiation energy influences on safety of gas in coal mine[J]. Journal of China Coal Society,2013,38(4):542-547.
|
[12] |
孙继平,贾倪. 矿井电磁波能量安全性研究[J]. 中国矿业大学学报,2013,42(6):1002-1008.SUN Jiping,JIA Ni. Safety study of electromagnetic wave energy in coal mine[J]. Journal of China University of Mining and Technology,2013,42(6):1002-1008.
|
[13] |
刘晓阳,马新彦,田子建,等. 井下金属结构等效接收天线的放电火花安全性研究[J]. 工矿自动化,2021,47(9):126-130.LIU Xiaoyang,MA Xinyan,TIAN Zijian,et al. Research on discharge spark safety of equivalent receiving antenna of underground metal structure[J]. Industry and Mine Automation,2021,47(9):126-130.
|
[14] |
范思涵,杨维,刘俊波. 井下金属结构近场耦合大环发射天线电磁波能量安全性分析[J]. 工矿自动化,2022,48(6):118-127.FAN Sihan,YANG Wei,LIU Junbo. Analysis of electromagnetic wave energy safety of underground metal structure near-field coupled large loop transmitting antenna[J]. Journal of Mine Automation,2022,48(6):118-127.
|
[15] |
梁伟锋,孙继平,彭铭,等. 煤矿井下无线电波防爆安全功率阈值研究[J]. 工矿自动化,2022,48(12):123-128,163.LIANG Weifeng,SUN Jiping,PENG Ming,et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128,163.
|
[16] |
孙继平,彭铭,潘涛,等. 无线电波防爆安全阈值研究[J]. 工矿自动化,2023,49(2):1-5.SUN Jiping,PENG Ming,PAN Tao,et al. Research on the safety threshold of radio wave explosion-proof[J]. Journal of Mine Automation,2023,49(2):1-5.
|
[17] |
张勇. 煤矿井下无线射频近场谐振耦合防爆电磁能仿真分析[J]. 煤矿安全,2022,53(8):134-138.ZHANG Yong. Simulation analysis of explosion-proof electromagnetic energy coupled with radio frequency near field resonance in underground coal mine[J]. Safety in Coal Mines,2022,53(8):134-138.
|
[18] |
李褚益. 微波技术与微波电路[M]. 广州: 华南理工大学出版社, 2007.LI Chuyi. Microwave technology and microwave circuits[M]. Guangzhou: South China University of Technology Press, 2007.
|
[19] |
钟顺时. 天线理论与技术[M]. 2版. 北京: 电子工业出版社, 2015.ZHONG Shunshi. Antenna theory and techniques[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2015.
|
[20] |
徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996.XU Xueji, ZHU Dingchang. Gas discharge physics[M]. Shanghai: Fudan University Press, 1996.
|
[21] |
刘建华. 爆炸性气体环境下本质安全电路放电理论及非爆炸评价方法的研究[D]. 徐州: 中国矿业大学, 2008.LIU Jianhua. A study on discharge theory and non-explosion evaluating method of the intrinsically safe circuits for explosive atmospheres[D]. Xuzhou: China University of Mining and Technology, 2008.
|
[22] |
赵永秀,刘树林,马一博. 爆炸性试验电感电路分断放电特性分析与建模[J]. 煤炭学报,2015,40(7):1698-1704.ZHAO Yongxiu,LIU Shulin,MA Yibo. Analysis and modeling of inductor-disconnected-discharged characteristics based on explosive test[J]. Journal of China Coal Society,2015,40(7):1698-1704.
|
[23] |
孙继平. 屯兰煤矿“2·22”特别重大瓦斯爆炸事故原因及教训[J]. 煤炭学报,2010,35(1):72-75.SUN Jiping. The causes and lessons of "2·22" gas explosion disaster at Tunlan Coal Mine[J]. Journal of China Coal Society,2010,35(1):72-75.
|
[24] |
GB 3836.4−2021 爆炸性环境 第4部分: 由本质安全型“i”保护的设备[S].GB 3836.4-2021 Explosive atmospheres-Part4: Equipment protection by intrinsic safety "i"[S].
|
[25] |
赵永秀,晏铭,王骑. Buck-Boost变换器内部分断放电引燃能力及评价方法[J]. 西安科技大学学报,2022,42(1):160-167.ZHAO Yongxiu,YAN Ming,WANG Qi. Ignition capability and evaluation method of inner disconnected discharge in Buck-Boost converter[J]. Journal of Xi'an University of Science and Technology,2022,42(1):160-167.
|