Abstract:
The technological development and application status of underground complex space UAVs are analyzed. It is pointed out that underground complex space UAVs face problems such as insufficient individual performance, limited environmental situational awareness and autonomous navigation capabilities, and limited formation collaboration capabilities. In order to solve the above problems, the development trends of key technologies for underground UAVs are prospected. ① Small and lightweight integrated UAV design technology is proposed. By improving the mechanical structure of the UAV, improving the integration of information perception sensors such as LiDAR and depth camera with control systems, and optimizing power management systems, the ultimate goal is to improve the cruise speed, endurance time, and other performance of individual UAV. ② Situation awareness and autonomous navigation technology in GPS rejection environment is proposed. The key technical challenges such as simultaneous localization and mapping (SLAM) navigation and real-time path planning should be overcome. The limitations of algorithms around specific scenarios should be gradually broken through. The perception capability, environmental adaptability, and robustness of unmanned systems should be improved. ③ Formation collaboration control technology under limited information is proposed. The technical problems such as heterogeneous/isomorphic UAV cluster collaboration, and wireless communication in complex channel environments should be overcome. By optimizing UAV swarm intelligence control strategies, information interaction mechanisms, and task decision-making collaboration mechanisms, the robustness of clustered unmanned systems should be enhanced. The adaptability of unmanned systems in complex underground environments should be improved. Furthermore, the task execution efficiency and success rate of unmanned systems should be improved.