留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿移动机器人LiDAR/IMU紧耦合SLAM方法

李猛钢 胡而已 朱华

李猛钢,胡而已,朱华. 煤矿移动机器人LiDAR/IMU紧耦合SLAM方法[J]. 工矿自动化,2022,48(12):68-78.  doi: 10.13272/j.issn.1671-251x.2022100061
引用本文: 李猛钢,胡而已,朱华. 煤矿移动机器人LiDAR/IMU紧耦合SLAM方法[J]. 工矿自动化,2022,48(12):68-78.  doi: 10.13272/j.issn.1671-251x.2022100061
LI Menggang, HU Eryi, ZHU Hua. LiDAR/IMU tightly-coupled SLAM method for coal mine mobile robot[J]. Journal of Mine Automation,2022,48(12):68-78.  doi: 10.13272/j.issn.1671-251x.2022100061
Citation: LI Menggang, HU Eryi, ZHU Hua. LiDAR/IMU tightly-coupled SLAM method for coal mine mobile robot[J]. Journal of Mine Automation,2022,48(12):68-78.  doi: 10.13272/j.issn.1671-251x.2022100061

煤矿移动机器人LiDAR/IMU紧耦合SLAM方法

doi: 10.13272/j.issn.1671-251x.2022100061
基金项目: 国家自然科学基金资助项目(52274159);江苏省自然科学基金资助项目(BK20210497);机器人学国家重点实验室联合开放基金项目(2022-KF-22-05)。
详细信息
    作者简介:

    李猛钢(1993—),男,内蒙古包头人,讲师,博士,硕士研究生导师,主要研究方向为煤矿机器人定位导航,E-mail:sallylmg@cumt.edu.cn

    通讯作者:

    胡而已(1982—),男,安徽桐城人,副教授,博士,硕士研究生导师,主要研究方向为煤矿机器人,E-mail:hu@cumt.edu.cn

  • 中图分类号: TD67

LiDAR/IMU tightly-coupled SLAM method for coal mine mobile robot

  • 摘要: 煤矿井下机器人同步定位与地图构建(SLAM)是当前研究热点,但针对提高激光SLAM在井下复杂条件下精度、鲁棒性的研究仍然不足;传统激光SLAM方法在井下复杂环境下存在累计误差迅速增大、旋转过程鲁棒性差、特征关联错误率高等问题;现有激光−惯性融合的定位建图紧耦合融合机制仍需进一步提高对煤矿井下复杂环境的适应能力。针对上述问题,提出了一种煤矿机器人LiDAR(激光雷达)/IMU(惯性测量单元)紧耦合SLAM方法(LI−SLAM方法)。首先利用IMU观测信息预测点云运动状态并进行有效补偿,减少由于剧烈振动、快速旋转等恶劣运动工况导致的点云畸变;然后提取雷达点云的边线与平面特征,基于点−线和点−面扫描匹配构建激光相对位姿约束,并在向量空间与流形空间解析推导了约束的残差、雅可比矩阵、协方差矩阵构建过程;最后通过构建雷达相对位姿约束因子、IMU预积分约束因子、回环检测约束因子,基于因子图优化方法完成LiDAR/IMU紧耦合,实现井下复杂环境下煤矿移动机器人的定位与地图构建。为了验证LI−SLAM方法在颠簸路面、复杂场景的精度与鲁棒性,基于煤矿轮式移动机器人平台,在野外、地下车库环境下进行了试验,在晋能集团塔山煤矿开展了工业性试验,并与当前最优的激光里程计与建图(LOAM)方法、激光雷达惯性状态估计(LINS)方法、雷达惯性里程计与建图(LIO−mapping)方法进行了对比。在野外颠簸路面的试验结果表明:LI−SLAM方法和LOAM方法的地图一致性最好,与真实路线基本吻合,LI−SLAM方法对旋转有更佳的适应能力,距离误差最小;LIO−mapping方法无法实时运行,在0.5倍速下可以获得完整轨迹,但在初始运动阶段出现了较大程度的方向偏移,初始化过程容易失败;LINS方法由于仅利用了最新的观测信息,在复杂地形下出现了漂移。地下车库环境下的试验结果表明:与LOAM方法、LINS方法、LIO−mapping方法相比,LI−SLAM方法具有较高的建模精度,局部精细化程度更高,运动轨迹更平滑。煤矿井下现场工业性试验结果表明:LI−SLAM方法在各类地形环境中均可以稳定、在线运行,满足鲁棒性、实时性需求;在煤矿移动机器人行驶巷道直线距离为273 m时,分析30组距离结果,平均误差小于15 cm,具有较高的定位和建模精度,基本满足煤矿移动机器人的定位建模精度需求,对于煤矿井下复杂环境下的移动机器人精确定位与地图构建有更好的适用性。

     

  • 图  1  LI−SLAM方法框架

    Figure  1.  Framework of the LI-SLAM method

    图  2  因子图模型

    Figure  2.  Factor graph model

    图  3  2类特征点数据关联方法

    Figure  3.  Data association method for two kinds of features

    图  4  预积分原理

    Figure  4.  Principle of pre-integration

    图  5  轮式移动机器人试验平台及野外试验场地

    Figure  5.  Wheeled mobile robot test platform and field tests environment

    图  6  试验场地1中各种方法的运行轨迹

    Figure  6.  Trajectories for different methods in different test scenario 1

    图  7  试验场地2中各种方法的运行轨迹

    Figure  7.  Trajectories for different methods in different test scenario 2

    图  8  试验场地3中各种方法的运行轨迹

    Figure  8.  Trajectories for different methods in different test scenario 3

    图  9  回环优化效果

    Figure  9.  Effect of loop optimization

    图  10  地下车库环境及机器人平台

    Figure  10.  Underground garage environment and robot platform

    图  11  LI−SLAM方法在地下车库建模效果

    Figure  11.  Modeling results of LI−SLAM method in underground garage

    图  12  不同方法轨迹对比

    Figure  12.  Comparison of trajectories of different methods

    图  13  煤矿井下现场试验

    Figure  13.  Field tests in underground coal mine

    图  14  机器人在井下各类复杂环境中运行情况

    Figure  14.  Running process of the robot in several complex environment in underground coal mine

    图  15  煤矿井下建模效果

    Figure  15.  Modeling results in underground coal mine

    表  1  不同方法起点、终点间距离与真值的误差

    Table  1.   The distance and truth value error between the starting point and the end point of different methods

    试验场地行程/m时间/s误差/m
    LIO−mapping×0.5LINS
    LOAM
    LI−SLAM
    13368548.8674.8090.233
    21974772.7880.98590.4
    3963143329.21715.90417.204
    下载: 导出CSV

    表  2  野外试验时LI−SLAM方法中各模块耗时均值与最大值

    Table  2.   The average and maximum time consumption of each module of LI-SLAM method in field tests ms

    模块耗时均值耗时最大值
    去畸变1.8897.466
    特征提取2.65813.332
    回环检测85.820915.839
    地图构建49.322169.238
    优化0.153156.012
    下载: 导出CSV

    表  3  不同方法起点、终点间距离的误差

    Table  3.   The distance error between the starting point and the end point of different methods

    行程/m时间/s误差/m
    LIO−mappinsg
    LINS
    LOAM
    LI−SLAM
    168.9549.71.2270.1810.0700.126
    下载: 导出CSV

    表  4  地下车库试验时LI−SLAM方法中各模块耗时均值与最大值

    Table  4.   The average and maximum time consumption of each module in LI-SLAM method in underground garage tests ms

    模块耗时均值耗时最大值
    去畸变2.31910.885
    特征提取3.3809.034
    回环检测44.092359.736
    地图构建28.115171.516
    优化0.07879.906
    下载: 导出CSV
  • [1] 葛世荣,胡而已,裴文良. 煤矿机器人体系及关键技术[J]. 煤炭学报,2020,45(1):455-463. doi: 10.13225/j.cnki.jccs.YG19.1478

    GE Shirong,HU Eryi,PEI Wenliang. Classification system and key technology of coal mine robot[J]. Journal of China Coal Society,2020,45(1):455-463. doi: 10.13225/j.cnki.jccs.YG19.1478
    [2] BOSSE M,ZLOT R,FLICK P. Zebedee:design of a spring-mounted 3-D range sensor with application to mobile mapping[J]. IEEE Transaction on Robot,2012,28(5):1104-1119. doi: 10.1109/TRO.2012.2200990
    [3] HUBER D F, VANDAPEL N. Automatic 3D underground mine mapping[C]. Proceedings of Field and Service Robotics, Berlin, 2003: 497-506.
    [4] THRUN S,THAYER S,WHITTAKER W,et al. Autonomous exploration and mapping of abandoned mines[J]. IEEE Robotics & Automation Magazine,2004,11(4):79-91.
    [5] ZLOT R,BOSSE M. Efficient large-scale three-dimensional mobile mapping for underground mines[J]. Journal of Field Robotics,2014,31(5):758-779. doi: 10.1002/rob.21504
    [6] TARDIOLI D,RIAZUELO L,SICIGNANO D,et al. Ground robotics in tunnels:keys and lessons learned after 10 years of research and experiments[J]. Journal of Field Robotics,2019,36(6):1074-1101. doi: 10.1002/rob.21871
    [7] KASPER M, MCGUIRE S, HECKMAN C. A benchmark for visual-inertial odometry systems employing onboard illumination[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Macau, 2019: 5256-5263.
    [8] EBADI K, CHANGE Y, PALIERI M, et al. LAMP: large-scale autonomous mapping and positioning for exploration of perceptually-degraded subterranean environments[C]. IEEE International Conference on Robotics and Automation (ICRA), Paris, 2020: 80-86.
    [9] WISTH D,CAMURRI M,DAS S,et al. Unified multi-modal landmark tracking for tightly coupled lidar-visual-inertial odometry[J]. IEEE Robotics and Automation Letters,2021,6(2):1004-1011. doi: 10.1109/LRA.2021.3056380
    [10] 马宏伟,王岩,杨林. 煤矿井下移动机器人深度视觉自主导航研究[J]. 煤炭学报,2020,45(6):2193-2206. doi: 10.13225/j.cnki.jccs.zn20.0214

    MA Hongwei,WANG Yan,YANG Lin. Research on depth vision based mobile robot autonomous navigation in underground coal mine[J]. Journal of China Coal Society,2020,45(6):2193-2206. doi: 10.13225/j.cnki.jccs.zn20.0214
    [11] 陈先中,刘荣杰,张森,等. 煤矿地下毫米波雷达点云成像与环境地图导航研究进展[J]. 煤炭学报,2020,45(6):2182-2192. doi: 10.13225/j.cnki.jccs.zn20.0316

    CHEN Xianzhong,LIU Rongjie,ZHANG Sen,et al. Development of millimeter wave radar imaging and SLAM in underground coal mine environment[J]. Journal of China Coal Society,2020,45(6):2182-2192. doi: 10.13225/j.cnki.jccs.zn20.0316
    [12] 杨健健,张强,吴淼,等. 巷道智能化掘进的自主感知及调控技术研究进展[J]. 煤炭学报,2020,45(6):2045-2055. doi: 10.13225/j.cnki.jccs.zn20.0287

    YANG Jianjian,ZHANG Qiang,WU Miao,et al. Research progress of autonomous perception and control technology for intelligent heading[J]. Journal of China Coal Society,2020,45(6):2045-2055. doi: 10.13225/j.cnki.jccs.zn20.0287
    [13] LI Menggang,ZHU Hua,YOU Shaoze,et al. Efficient laser-based 3D SLAM for coal mine rescue robots[J]. IEEE Access,2019(7):14124-14138.
    [14] 高士岗,高登彦,欧阳一博,等. 中薄煤层智能开采技术及其装备[J]. 煤炭学报,2020,45(6):1997-2007. doi: 10.13225/j.cnki.jccs.zn20.0246

    GAO Shigang,GAO Dengyan,OUYANG Yibo,et al. Intelligent mining technology and its equipment for medium thickness thin seam[J]. Journal of China Coal Society,2020,45(6):1997-2007. doi: 10.13225/j.cnki.jccs.zn20.0246
    [15] POMERLEAU F,COLAS F,SIEGWART R. A review of point cloud registration algorithms for mobile robotics[J]. Foundations and Trends in Robotics,2015,5(4-1):1-104.
    [16] NÜCHTER A,LINGEMANN K,HERTZBERG J,et al. 6D SLAM—3D mapping outdoor environments[J]. Journal of Field Robotics,2007,24(8/9):699-722.
    [17] ZHANG Ji, SINGH S. LOAM: lidar odometry and mapping in real-time[C]. Robotics: Science and Systems Conference, California, 2014. DOI: 10.15607/RSS.2014. X.007.
    [18] SHAN Tixiao, ENGLOT B. LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, 2018: 4758-4765.
    [19] WEINGARTEN J, SIEGWART R. 3D SLAM using planar segments[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Beijing, 2006: 3062-3067.
    [20] TREVOR A J B, ROGERS J G, CHRISTENSEN H I. Planar surface SLAM with 3D and 2D sensors[C]. IEEE International Conference on Robotics and Automation(ICRA), Saint Paul, 2012: 3041-3048.
    [21] YE Haoyang, CHEN Yuying, LIU Ming. Tightly coupled 3D lidar inertial odometry and mapping[C]. IEEE International Conference on Robotics and Automation (ICRA), Montreal, 2019: 3144-3150.
    [22] SHAN Tixiao, ENGLOT B, MEYERS D, et al. LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and mapping[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, 2020: 5135-5142.
    [23] QIN Chao, YE Haoyang, PRANATA C E, et al. LINS: a lidar-inertial state estimator for robust and efficient navigation[C]. IEEE International Conference on Robotics and Automation (ICRA), Paris, 2020: 8899-8906.
    [24] XU Wei,ZHANG Fu. Fast-LIO:a fast,robust lidar-inertial odometry package by tightly-coupled iterated Kalman filter[J]. IEEE Robotics and Automation Letters,2021,6(2):3317-3324. doi: 10.1109/LRA.2021.3064227
    [25] 杨林,马宏伟,王岩. 煤矿井下移动机器人基于激光惯性的融合 SLAM 算法[J]. 煤炭学报,2022,47(9):3523-3534.

    YANG Lin,MA Hongwei,WANG Yan. LiDAR-Inertial SLAM for mobile robot in underground coal mine[J]. Journal of China Coal Society,2022,47(9):3523-3534.
    [26] QIN Tong,LI Peiliang,SHEN Shaojie. Vins-mono:a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics,2018,34(4):1004-1020. doi: 10.1109/TRO.2018.2853729
    [27] 朱华,由韶泽. 新型煤矿救援机器人研发与试验[J]. 煤炭学报,2020,45(6):2170-2181. doi: 10.13225/j.cnki.jccs.zn20.0352

    ZHU Hua,YOU Shaoze. Research and experiment of a new type of coal mine rescue robot[J]. Journal of China Coal Society,2020,45(6):2170-2181. doi: 10.13225/j.cnki.jccs.zn20.0352
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  437
  • HTML全文浏览量:  80
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-19
  • 修回日期:  2022-12-09
  • 网络出版日期:  2022-12-01

目录

    /

    返回文章
    返回