留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿带式输送机分拣机器人异物识别与定位系统设计

薛旭升 杨星云 齐广浩 马宏伟 毛清华 尚新芒

薛旭升,杨星云,齐广浩,等. 煤矿带式输送机分拣机器人异物识别与定位系统设计[J]. 工矿自动化,2022,48(12):33-41.  doi: 10.13272/j.issn.1671-251x.2022100024
引用本文: 薛旭升,杨星云,齐广浩,等. 煤矿带式输送机分拣机器人异物识别与定位系统设计[J]. 工矿自动化,2022,48(12):33-41.  doi: 10.13272/j.issn.1671-251x.2022100024
XUE Xusheng, YANG Xingyun, QI Guanghao, et al. Design of foreign object recognition and positioning system for sorting robot of coal mine belt conveyor[J]. Journal of Mine Automation,2022,48(12):33-41.  doi: 10.13272/j.issn.1671-251x.2022100024
Citation: XUE Xusheng, YANG Xingyun, QI Guanghao, et al. Design of foreign object recognition and positioning system for sorting robot of coal mine belt conveyor[J]. Journal of Mine Automation,2022,48(12):33-41.  doi: 10.13272/j.issn.1671-251x.2022100024

煤矿带式输送机分拣机器人异物识别与定位系统设计

doi: 10.13272/j.issn.1671-251x.2022100024
基金项目: 国家重点研发计划青年科学家项目(2022YFF0605300);国家自然科学基金面上项目(51975468);陕西省自然科学基础研究计划项目(2019JQ-802);国家自然科学基金重点项目(51834006);西安市科技计划项目(22GXFW0067)。
详细信息
    作者简介:

    薛旭升(1987—),男,陕西兴平人,讲师,博士,主要研究方向为智能检测与控制、煤矿机器人关键技术等,E-mail:xuexsh@xust.edu.cn

    通讯作者:

    杨星云(1995—),男,山西朔州人,硕士研究生,主要研究方向为机械电子工程,E-mail:1343034867@qq.com

  • 中图分类号: TD634

Design of foreign object recognition and positioning system for sorting robot of coal mine belt conveyor

  • 摘要: 机器视觉已在煤矿带式输送机分拣机器人目标检测与识别方面具有一定的理论基础,但目前煤矿带式输送机分拣机器人目标识别主要针对煤矸石识别,对造成输送带穿透、撕裂等的异物目标识别的研究较少,且在目标异物精确定位方面的研究也较少。针对上述问题,设计了一种基于机器视觉的煤矿带式输送机分拣机器人异物识别与定位系统,可对输送带上存在的不同类型和不同形状的异物进行识别与定位。采用双目视觉实时获取输送带上异物图像信息,并对图像进行预处理,基于Canny算子进行图像信息增强,通过灰度拉伸方法改进图像边缘信息,突出煤矿带式输送机上异物的边缘特征;利用形态学方法提取异物形状特征,建立异物图像特征样本库,通过图像特征匹配的方式解算出异物存在区域,实现异物类型的检测、分类与识别;在异物类型成功识别的基础上,以目标异物边缘特征值为基础,建立目标异物的感兴趣区域(ROI),构建相机、输送带与目标异物坐标转换关系,利用多目标质心快速计算方法求取目标异物质心坐标,实现对目标异物的定位。系统样机实验结果表明:煤矿带式输送机分拣机器人异物识别与定位系统异物识别率不受尺寸、材质和颜色等因素影响,能够实现输送带目标异物图像的采集、处理、特征提取、识别和位置定位,识别率为92.5 %以上,目标异物位置定位平均误差为3%左右。

     

  • 图  1  煤矿带式输送机分拣机器人系统样机

    Figure  1.  Prototype of sorting robot system of coal mine belt conveyor

    图  2  煤矿带式输送机分拣机器人异物识别与定位系统界面

    Figure  2.  Interface of foreign object recognition and positioning system for sorting robot of coal mine belt conveyor

    图  3  煤矿带式输送机分拣机器人异物识别和定位方法架构

    Figure  3.  Architecture of foreign object recognition and positioning method for sorting robots of coal mine belt conveyor

    图  4  异物识别方法原理

    Figure  4.  Principle of foreign object recognition methods

    图  5  ROI视觉内划定

    Figure  5.  Intra-visual delineation of region of interest

    图  6  图像坐标系和像素坐标系

    Figure  6.  Image and pixel coordinate systems

    图  7  转换坐标系

    Figure  7.  Converting the coordinate system

    图  8  目标异物坐标信息、目标异物类别信息、输送带实时图像和目标识别提取图像等系统程序

    Figure  8.  System programs such as target foreign object coordinate information, target foreign object category information, real-time image of conveyor belt and target recognition and extraction image

    图  9  煤矿带式输送机分拣机器人异物识别与定位实验

    Figure  9.  Foreign object recognition and positioning experiment of sorting robot of coal mine belt conveyor

    图  10  不同形状的杆状目标异物

    Figure  10.  Rod-shaped target foreign object with different shape

    图  11  目标异物X,Y轴坐标误差

    Figure  11.  Target foreign object coordinates X and Y axis error

    表  1  输送带上的异物类别

    Table  1.   Types of foreign objects on conveyor belt

    序号异物序号异物序号异物
    18铁背板15道钉/道木
    2(半)圆木9竹芭/塑芭16道夹板
    3锚杆/锚索10工字钢头17风带条
    4铁丝11钻头/杆18钢丝绳
    5编织袋12输送带头/卡19塑料瓶/袋
    6棉纱13脚线20盖板
    7螺栓、螺帽14雷管21水/水煤
    下载: 导出CSV

    表  2  实验平台主要性能参数

    Table  2.   Main performance parameters of the experimental platform

    序号核心部件主要参数
    1 双目视觉 视角:对角线视角为121°;水平方向视角为105°;
    垂直方向视角为58°
    焦距/mm: 2.45
    深度工作距离/m: 0.32~7
    同步精度/ms: <0.01
    帧率/(帧·s−1): 60
    分辨率: 2 560×720
    像素尺寸/μm: 3.75×3.75
    2 机械臂 最大伸展距离/mm: 320
    重复定位精度/mm: 0.2
    抓取范围/mm: 310
    抓取效率/%: >95
    3 输送带 长度/mm: 600
    速度/(mm·s−1): 120
    下载: 导出CSV

    表  3  异物图像识别结果

    Table  3.   Foreign object image recognition results

    样本类别样本数正确识别样本数识别率/%
    杆状异物302893.33
    下载: 导出CSV

    表  4  不同长度的杆状目标异物图像识别结果

    Table  4.   Rod-shaped target foreign object image recognition results for different lengths

    长度/cm实验次数成功识别次数识别率/%
    3403997.5
    5403792.5
    7403895.0
    下载: 导出CSV

    表  5  不同直径的杆状目标异物图像识别结果

    Table  5.   Rod-shaped target foreign object image recognition results for different diameters

    直径/mm实验次数成功识别次数识别率/%
    15403895.0
    10403792.5
    5403895.0
    下载: 导出CSV

    表  6  目标异物质心位置坐标解算实验结果

    Table  6.   Experimental results for solving the coordinates of the target foreign object's centre of mass position

    目标异物x0/mm${x}_{0}'$/mm相对误差/%y0/mm${y}_{0}'$/mm相对误差/%
    16059.784 90.366362.928 30.11
    25857.016 91.705051.235 72.47
    34846.269 73.606563.852 81.76
    45552.932 53.765956.740 93.83
    55046.337 77.326161.080 30.13
    65656.598 01.076161.858 51.41
    75048.676 02.656463.497 50.79
    85859.072 51.855455.921 93.56
    94846.701 12.715554.869 20.24
    104340.729 25.285350.847 24.06
    114445.499 73.415957.838 91.97
    125859.908 93.296263.018 71.64
    134344.003 92.335962.768 56.39
    144748.606 13.425457.232 85.99
    154948.010 22.026561.735 95.02
    165352.759 70.455855.509 94.29
    175957.437 42.655754.312 74.71
    185958.117 01.505759.562 64.50
    194745.203 43.825551.423 46.50
    204241.205 41.895855.304 44.65
    下载: 导出CSV
  • [1] 刘峰. 对煤矿智能化发展的认识和思考[J]. 中国煤炭工业,2020(8):5-9. doi: 10.3969/j.issn.1673-9612.2020.08.002

    LIU Feng. Understanding and thinking on intelligent development of coal mine[J]. China Coal Industry,2020(8):5-9. doi: 10.3969/j.issn.1673-9612.2020.08.002
    [2] 葛世荣. 煤矿机器人现状及发展方向[J]. 中国煤炭,2019,45(7):18-27. doi: 10.3969/j.issn.1006-530X.2019.07.004

    GE Shirong. Present situation and development direction of coal mine robots[J]. China Coal,2019,45(7):18-27. doi: 10.3969/j.issn.1006-530X.2019.07.004
    [3] 文灵,谢元媛. 利用机器视觉远程监测煤矿带式输送机故障[J]. 能源与环保,2022,44(7):201-205.

    WEN Ling,XIE Yuanyuan. Remote monitoring of faults of coal mine belt conveyor by machine vision[J]. China Energy and Environmental Protection,2022,44(7):201-205.
    [4] 刘莉莉,苗长云. 基于机器视觉的带式输送机带速检测方法的研究[J]. 仪表技术与传感器,2020(7):118-121,126. doi: 10.3969/j.issn.1002-1841.2020.07.024

    LIU Lili,MIAO Changyun. Research on belt conveyor speed detection based on machine vision[J]. Instrument Technique and Sensor,2020(7):118-121,126. doi: 10.3969/j.issn.1002-1841.2020.07.024
    [5] 杨春雨,顾振,张鑫,等. 基于深度学习的带式输送机煤流量双目视觉测量[J]. 仪器仪表学报,2021,41(8):164-174. doi: 10.19650/j.cnki.cjsi.J2107842

    YANG Chunyu,GU Zhen,ZHANG Xin,et al. Binocular vision measurement of coal flow of belt conveyors based on deep learning[J]. Chinese Journal of Scientific Instrument,2021,41(8):164-174. doi: 10.19650/j.cnki.cjsi.J2107842
    [6] 陈晓晶. 井工煤矿运输系统智能化技术现状及发展趋势[J]. 工矿自动化,2022,48(6):6-14, 35. doi: 10.13272/j.issn.1671-251x.17933

    CHEN Xiaojing. Current status and development trend of intelligent technology of underground coal mine transportation system[J]. Journal of Mine Automation,2022,48(6):6-14, 35. doi: 10.13272/j.issn.1671-251x.17933
    [7] 王志星,乔铁柱. 带式输送机胶带纵向撕裂双目视觉在线检测系统研究与设计[J]. 中国煤炭,2018,44(4):87-90, 105. doi: 10.3969/j.issn.1006-530X.2018.04.016

    WANG Zhixing,QIAO Tiezhu. Study and design on binocular vision online monitoring system of conveyor belt longitudinal tearing[J]. China Coal,2018,44(4):87-90, 105. doi: 10.3969/j.issn.1006-530X.2018.04.016
    [8] 王燕,郭潇樯,刘新华. 带式输送机大块异物视觉检测系统设计[J]. 机械科学与技术,2021,40(12):1939-1943. doi: 10.13433/j.cnki.1003-8728.20200284

    WANG Yan,GUO Xiaoqiang,LIU Xinhua. Design of visual detection system for large foreign body in belt conveyor[J]. Mechanical Science and Technology for Aerospace Engineering,2021,40(12):1939-1943. doi: 10.13433/j.cnki.1003-8728.20200284
    [9] 苗长云,陈雯. 基于机器视觉和支持向量机的带式输送机矸石检测方法[J]. 天津工业大学学报,2022,41(1):60-65. doi: 10.3969/j.issn.1671-024x.2022.01.010

    MIAO Changyun,CHEN Wen. A method for detecting gangue of belt conveyor based on machine vision and support vector machine[J]. Journal of Tiangong University,2022,41(1):60-65. doi: 10.3969/j.issn.1671-024x.2022.01.010
    [10] 杜京义,陈瑞,郝乐,等. 煤矿带式输送机异物检测[J]. 工矿自动化,2021,47(8):77-83. doi: 10.13272/j.issn.1671-251x.2021040026

    DU Jingyi,CHEN Rui,HAO Le,et al. Coal mine belt conveyor foreign object detection[J]. Industry and Mine Automation,2021,47(8):77-83. doi: 10.13272/j.issn.1671-251x.2021040026
    [11] 胡璟皓,高妍,张红娟,等. 基于深度学习的带式输送机非煤异物识别方法[J]. 工矿自动化,2021,47(6):57-62,90.

    HU Jinghao,GAO Yan,ZHANG Hongjuan,et al. Research on the identification method of non-coal foreign object of belt conveyor based on deep learning[J]. Industry and Mine Automation,2021,47(6):57-62,90.
    [12] 吴守鹏,丁恩杰,俞啸. 基于改进FPN的输送带异物识别方法[J]. 煤矿安全,2019,50(12):127-130.

    WU Shoupeng,DING Enjie,YU Xiao. Foreign body identification of belt based on improved FPN[J]. Safety in Coal Mines,2019,50(12):127-130.
    [13] 马宏伟,孙那新,张烨,等. 煤矸石分拣机器人动态目标稳定抓取轨迹规划[J]. 工矿自动化,2022,48(4):20-30. doi: 10.13272/j.issn.1671-251x.2021110050

    MA Hongwei,SUN Naxin,ZHANG Ye,et al. Track planning of coal gangue sorting robot for dynamic target stable grasping[J]. Journal of Mine Automation,2022,48(4):20-30. doi: 10.13272/j.issn.1671-251x.2021110050
    [14] 曹现刚,刘思颖,王鹏,等. 面向煤矸分拣机器人的煤矸识别定位系统研究[J]. 煤炭科学技术,2022,50(1):237-246. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201024

    CAO Xiangang,LIU Siying,WANG Peng,et al. Research on coal gangue identification and positioning system based on coal-gangue sorting robot[J]. Coal Science and Technology,2022,50(1):237-246. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201024
    [15] 王鹏,曹现刚,夏晶,等. 基于机器视觉的多机械臂煤矸石分拣机器人系统研究[J]. 工矿自动化,2019,45(9):47-53. doi: 10.13272/j.issn.1671-251x.17442

    WANG Peng,CAO Xiangang,XIA Jing,et al. Research on multi-manipulator coal and gangue sorting robot system based on machine vision[J]. Industry and Mine Automation,2019,45(9):47-53. doi: 10.13272/j.issn.1671-251x.17442
    [16] MATTONE R,CAMPAGIORNI G,GALATI F,et al. Sorting of items on a moving conveyor belt-part 1:a technique for detecting and classifying objects[J]. Robotics and Computer-Integrated Manufacturing,2000,16(2/3):73-80.
    [17] FEIERABEND A. Application of NIR measurement technique for the identification and sorting of mineral rocks[J]. Gesellschaft Fuer Bergbau,Metallurgie,Rohstoff-und UmwelttechnikSchriftenreihe,2010(122):33.
    [18] 石康,叶宏,胡安灿,等. 一种基于LabVIEW的机器视觉标定和校正方法[J]. 激光与光电子学进展,2014,51(10):127-136.

    SHI Kang. YE Hong,HU Ancan,et al. A new method for machine vision calibration and rectification based on LabVIEW[J]. Laser & Optoelectronics Progress,2014,51(10):127-136.
    [19] 涂波,刘璐,刘一会,等. 一种扩展小孔成像模型的鱼眼相机矫正与标定方法[J]. 自动化学报,2014,40(4):653-659.

    TU Bo,LIU Lu,LIU Yihui,et al. A calibration method for fish-eye cameras based on pinhole model[J]. Acta Automatica Sinica,2014,40(4):653-659.
    [20] 李海,王若璞,陈勇,等. 图像全站仪星点质心快速提取方法研究[J]. 测绘科学技术学报,2019,36(5):482-486.

    LI Hai,WANG Ruopu,CHEN Yong,et al. Fast star centroid extraction method for image total station[J]. Journal of Geomatics Science and Technology,2019,36(5):482-486.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  1250
  • HTML全文浏览量:  79
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-12
  • 修回日期:  2022-12-05
  • 网络出版日期:  2022-12-05

目录

    /

    返回文章
    返回