留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PSO−BP神经网络的临时支架支撑力自适应控制

田劼 李阳 张磊 刘振

田劼,李阳,张磊,等. 基于PSO−BP神经网络的临时支架支撑力自适应控制[J]. 工矿自动化,2023,49(7):67-74.  doi: 10.13272/j.issn.1671-251x.2022100017
引用本文: 田劼,李阳,张磊,等. 基于PSO−BP神经网络的临时支架支撑力自适应控制[J]. 工矿自动化,2023,49(7):67-74.  doi: 10.13272/j.issn.1671-251x.2022100017
TIAN Jie, LI Yang, ZHANG Lei, et al. Adaptive control of temporary support force based on PSO-BP neural network[J]. Journal of Mine Automation,2023,49(7):67-74.  doi: 10.13272/j.issn.1671-251x.2022100017
Citation: TIAN Jie, LI Yang, ZHANG Lei, et al. Adaptive control of temporary support force based on PSO-BP neural network[J]. Journal of Mine Automation,2023,49(7):67-74.  doi: 10.13272/j.issn.1671-251x.2022100017

基于PSO−BP神经网络的临时支架支撑力自适应控制

doi: 10.13272/j.issn.1671-251x.2022100017
基金项目: 国家自然科学基金面上项目(51774293);中央高校基本科研业务−重点领域交叉创新项目(2022JCCXJD02)。
详细信息
    作者简介:

    田劼 (1982—),女,山西太原人,教授,博士,主要研究方向为机器人化矿山综掘智能控制,E-mail:tianj@cumtb.edu.cn

  • 中图分类号: TD355.4

Adaptive control of temporary support force based on PSO-BP neural network

  • 摘要: 为了使临时支架的支撑力更好地与矿压相适应,提高支架的支护能力,以双联自移式临时支架为研究对象,提出了基于粒子群优化(PSO)−BP神经网络的临时支架支撑力自适应控制方法。利用PSO算法的全局搜索能力及快速收敛特性对BP神经网络的初始权值进行优化,提高BP神经网络的收敛速度;再通过优化后的BP神经网络实现PID参数在线自调整,构建PSO−BP神经网络优化PID控制器,使临时支架的支撑力更快速、准确地达到预定值,实现临时支架支撑力自适应控制,避免因支护力和顶板压力不匹配而对顶板造成破坏。用单位阶跃信号模拟临时支护支架的期望初撑力进行实验验证,结果表明,与BP神经网络优化PID控制器及传统PID控制器相比,PSO−BP神经网络优化PID控制器可以更快、更准确地达到预期的初撑力,调整时间仅为0.5 s且基本不存在超调。根据实际地质条件仿真模拟开挖支护过程中支架受到的顶板压力,研究3种控制器的支撑力自适应控制效果,结果表明,在PSO−BP神经网络优化PID控制器的控制下,系统误差仅为0.02 MPa,误差最小,控制效果最好。

     

  • 图  1  双联自移式临时支护支架结构

    1—底座;2—支架护帮板;3—护帮板千斤顶;4—顶板千斤顶;5—上顶板;6—下顶板;7—液压支撑油缸;8—推移油缸。

    Figure  1.  Structure of dual self-moving temporary support

    图  2  临时支撑力控制系统结构

    1—油箱;2—滤油器;3—电动机;4—液压泵;5—电液伺服阀;6—液压锁;7—油液压力传感器;8—支撑液压缸;9—溢流阀。

    Figure  2.  Structure of support force control system of temporary support

    图  3  临时支架支撑力控制系统原理

    Figure  3.  Principle of support force control system of temporary support

    图  4  临时支架支撑力控制系统性能曲线

    Figure  4.  Performance curves of support force control system of temporary support

    图  5  调整后系统Bode图

    Figure  5.  Bode diagram of the adjusted system

    图  6  BP神经网络结构

    Figure  6.  BP neural network structure

    图  7  初撑力响应曲线

    Figure  7.  Response curves of initial support force

    图  8  初撑力误差曲线

    Figure  8.  Error curves of initial support force

    图  9  巷道地质仿真模型

    Figure  9.  Roadway geological simulation models

    图  10  临时支架支撑力自适应控制曲线

    Figure  10.  Support force adaptive control curves of temporary support

    图  11  临时支架支撑力自适应控制误差曲线

    Figure  11.  Error curves of support force adaptive control of temporary support

    表  1  临时支架支撑力控制系统参数

    Table  1.   Parameters of support force control system of temporary support

    参数数值
    液压缸内腔直径/mm130
    液压缸活塞杆外径/mm80
    kq/(L∙min−1∙m−1)27 000
    kce/(L∙min−1∙MPa−1)0.06
    Aq/cm284.425
    ωn/Hz502.4
    ωh/Hz0.13
    ω0/Hz842.5
    ζ00.15
    kv/(m∙A−1)0.056
    ωv/Hz110
    ζv0.7
    ka/(A∙V−1)0.007
    kf/(V∙N−1)100
    下载: 导出CSV

    表  2  煤矿地质参数

    Table  2.   Coal mine geological parameters

    顶底板名称岩层名称厚度/m平均厚度/m
    基本顶砂岩2.28~11.977.29
    直接顶泥岩0.5~13.85.4
    煤层0.66~3.243
    直接底泥岩2.82.8
    基本底泥岩44
    下载: 导出CSV

    表  3  各岩层力学参数

    Table  3.   Mechanical parameters of each rock layer

    岩层
    名称
    密度/
    (kg·m−3)
    体积
    模量/GPa
    剪切
    模量/GPa
    黏聚
    力/MPa
    内摩擦
    角/(°)
    砂岩265063.63.035
    泥岩255052.31.228
    165042.51.024
    砂质
    泥岩
    200053.02.033
    下载: 导出CSV
  • [1] 秦海忠,付玉凯,王涛. 深部复合顶板巷道变形破坏特征及支护技术[J]. 工矿自动化,2020,46(10):80-86. doi: 10.13272/j.issn.1671-251x.2020020009

    QIN Haizhong,FU Yukai,WANG Tao. Deformation and failure characteristics and support technology of deep roadway with composite roof[J]. Industry and Mine Automation,2020,46(10):80-86. doi: 10.13272/j.issn.1671-251x.2020020009
    [2] 朱俊福. 深部层状岩体巷道围岩松动圈形成机理及其工程应用研究[D]. 徐州: 中国矿业大学, 2021.

    ZHU Junfu. Study on the formation mechanism and its engineering application of broken rock zone in deep bedded rock mass[D]. Xuzhou: China University of Mining and Technology, 2021.
    [3] 张铁军,李伟涛,尹松阳. 深部开采巷道掘进工作面受力特征及合理空顶距分析[J]. 煤炭科技,2022,43(5):50-53,57.

    ZHANG Tiejun,LI Weitao,YIN Songyang. Analysis of the stress characteristics and reasonable space between roadway and roof in deep mining[J]. Coal Science & Technology Magazine,2022,43(5):50-53,57.
    [4] 郭文孝. 交叉迈步式快速掘进临时支护支架组的研究[J]. 煤矿机械,2014,35(12):187-189. doi: 10.13436/j.mkjx.201412079

    GUO Wenxiao. Research on rapid excavation and temporary support of moving cross-type support group[J]. Coal Mine Machinery,2014,35(12):187-189. doi: 10.13436/j.mkjx.201412079
    [5] 薛光辉,管健,程继杰,等. 深部综掘巷道超前支架设计与支护性能分析[J]. 煤炭科学技术,2018,46(12):15-20. doi: 10.13199/j.cnki.cst.2018.12.003

    XUE Guanghui,GUAN Jian,CHENG Jijie,et al. Design of advance support for deep fully-mechanized heading roadway and its support performance analysis[J]. Coal Science and Technology,2018,46(12):15-20. doi: 10.13199/j.cnki.cst.2018.12.003
    [6] 卢进南. 综掘巷道迈步式超前支护系统力学特性研究[D]. 阜新: 辽宁工程技术大学, 2014.

    LU Jinnan. Study on mechanical properties of stepping advance support system in fully mechanized roadway [D]. Fuxin: Liaoning University of Engineering and Technology, 2014.
    [7] 王国法,庞义辉,李明忠,等. 超大采高工作面液压支架与围岩耦合作用关系[J]. 煤炭学报,2017,42(2):518-526. doi: 10.13225/j.cnki.jccs.2016.0699

    WANG Guofa,PANG Yihui,LI Mingzhong,et al. Hydraulic support and coal wall coupling relationship in ultra large height mining face[J]. Journal of China Coal Society,2017,42(2):518-526. doi: 10.13225/j.cnki.jccs.2016.0699
    [8] 栾丽君,赵慧萌,谢苗,等. 超前支架速度、压力稳定切换控制策略研究[J]. 机械强度,2017,39(4):747-753. doi: 10.16579/j.issn.1001.9669.2017.04.001

    LUAN Lijun,ZHAO Huimeng,XIE Miao,et al. Research on speed and pressure control strategy of stable switch about forepoling equipment[J]. Journal of Mechanical Strength,2017,39(4):747-753. doi: 10.16579/j.issn.1001.9669.2017.04.001
    [9] 胡相捧,刘新华,庞义辉,等. 基于BP神经网络PID的液压支架初撑力自适应控制[J]. 矿业科学学报,2020,5(6):662-671. doi: 10.19606/j.cnki.jmst.2020.06.009

    HU Xiangpeng,LIU Xinhua,PANG Yihui,et al. Adaptive control of setting load of hydraulic support based on BP neural network PID[J]. Journal of Mining Science and Technology,2020,5(6):662-671. doi: 10.19606/j.cnki.jmst.2020.06.009
    [10] 薛光辉,管健,柴敬轩,等. 基于神经网络PID综掘巷道超前支架支撑力自适应控制[J]. 煤炭学报,2019,44(11):3596-3603. doi: 10.13225/j.cnki.jccs.2018.1688

    XUE Guanghui,GUAN Jian,CHAI Jingxuan,et al. Adaptive control of advance bracket support force in fully mechanized roadway based on neural network PID[J]. Journal of China Coal Society,2019,44(11):3596-3603. doi: 10.13225/j.cnki.jccs.2018.1688
    [11] 姜磊,叶圣超,李飞龙. 基于PSO−BP神经网络的采煤机电动机故障诊断研究[J]. 矿山机械,2020,48(9):59-64. doi: 10.16816/j.cnki.ksjx.2020.09.012

    JIANG Lei,YE Shengchao,LI Feilong. Research on fault diagnosis of shearer motor based on PSO-BP neural network[J]. Mining & Processing Equipment,2020,48(9):59-64. doi: 10.16816/j.cnki.ksjx.2020.09.012
    [12] 陈兰. 液压支架液压系统的建模与仿真[D]. 西安: 西安科技大学, 2011.

    CHEN Lan. Modeling and simulation of hydraulic support hydraulic system[D]. Xi'an: Xi'an University of Science and Technology, 2011.
    [13] 冯玉芳,卢厚清,殷宏,等. 基于BP神经网络的故障诊断模型研究[J]. 计算机工程与应用,2019,55(6):24-30.

    FENG Yufang,LU Houqing,YIN Hong,et al. Study on fault diagnosis model based on BP neural network[J]. Computer Engineering and Applications,2019,55(6):24-30.
    [14] 邵建浩,张婷. 基于BP神经网络的SCARA机器人故障诊断[J]. 机床与液压,2022,50(14):166-170. doi: 10.3969/j.issn.1001-3881.2022.14.030

    SHAO Jianhao,ZHANG Ting. Fault diagnosis of SCARA robot based on BP neural network[J]. Machine Tool & Hydraulics,2022,50(14):166-170. doi: 10.3969/j.issn.1001-3881.2022.14.030
    [15] 袁建平,施一萍,蒋宇,等. 改进的BP神经网络PID控制器在温室环境控制中的研究[J]. 电子测量技术,2019,42(4):19-24. doi: 10.19651/j.cnki.emt.1802034

    YUAN Jianping,SHI Yiping,JIANG Yu,et al. Research on improved BP neural network PID controller in greenhouse environment control[J]. Electronic Measurement Technology,2019,42(4):19-24. doi: 10.19651/j.cnki.emt.1802034
    [16] 谢宇希,颜拥军,李翔,等. 基于BP神经网络的核探测器故障诊断方法研究[J]. 原子能科学技术,2021,55(10):1857-1864. doi: 10.7538/yzk.2020.youxian.0716

    XIE Yuxi,YAN Yongjun,LI Xiang,et al. Study of nuclear detector fault diagnosis method based on BP neural network[J]. Atomic Energy Science and Technology,2021,55(10):1857-1864. doi: 10.7538/yzk.2020.youxian.0716
    [17] XU Xianzhen, CAO Dan, ZHOU Yu, et al. Application of neural network algorithm in fault diagnosis of mechanical intelligence[J]. Mechanical Systems and Signal Processing, 2020, 141. DOI: 10.1016/j.ymssp.2020.106625.
    [18] WU Yanmin, SONG Qipeng. Improved particle swarm optimization algorithm in power system network reconfiguration[J]. Mathematical Problems in Engineering, 2021, 2021. DOI: 10.1155/2021/5574501.
    [19] 田劼,银晓琦,文艺成. 基于混合IWO−PSO算法的掘进机截割轨迹规划方法[J]. 工矿自动化,2021,47(12):55-61.

    TIAN Jie,YIN Xiaoqi,WEN Yicheng. Method of cutting trajectory planning of roadheader based on hybrid IWO-PSO algorithm[J]. Industry and Mine Automation,2021,47(12):55-61.
    [20] 施昕昕,费军. 基于PSO−BP的直线电机轨迹跟踪自抗扰控制器设计[J]. 组合机床与自动化加工技术,2023(6):132-135. doi: 10.13462/j.cnki.mmtamt.2023.06.030

    SHI Xinxin,FEI Jun. Design of active disturbance rejection controller for linear motor trajectory tracking based on PSO-BP[J]. Modular Machine Tool & Automatic Manufacturing Technique,2023(6):132-135. doi: 10.13462/j.cnki.mmtamt.2023.06.030
    [21] KAHOULI O, ALSAIF H, BOUTERAA Y, et al. Power system reconfiguration in distribution network for improving reliability using genetic algorithm and particle swarm optimization[J]. Applied Sciences, 2021, 11(7). DOI: 10.3390/app11073092.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  55
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 修回日期:  2023-07-16
  • 网络出版日期:  2023-08-03

目录

    /

    返回文章
    返回