一种矿用高隔离度三频MIMO天线设计

Design of a mine high isolation tri-band MIMO antenna

  • 摘要: 多频多输入多输出(MIMO)天线由于空间受限,存在单元间距较小产生的强耦合问题。针对该问题,设计了一种矿用高隔离度三频MIMO天线。通过在1个矩形枝节两端加载2个L型枝节组成三叉戟单极子天线,使天线具有三频特性;将2个三叉戟单极子天线单元对称放置,在2个单元之间的金属地板上加载1个T型枝节,利用寄生枝节产生的相反电流抵消未加枝节时耦合产生的电流,并蚀刻2个对称的矩形槽,通过改变地板上的电流分布来抑制地板表面波带来的互耦,从而使天线在整个频段内实现高隔离度。仿真结果表明:该天线工作在1.85~2.70,3.24~3.99,4.65~5.80 GHz频段,能有效覆盖煤矿井下WiMAX/WiFi/4G/5G NR工作频段;天线在3个频段内的隔离度分别大于20,22,22 dB,较去耦合前天线的隔离度分别提高了11,9,10 dB;包络相关系数小于0.2,具有良好的分集性能;天线在工作频段内增益变化稳定,且全向辐射特性良好。该天线具有结构简单紧凑、易加工、剖面低的优势,在煤矿无线通信中具有广泛的应用场景。

     

    Abstract: Due to space limitations, multi frequency multiple-input multiple-output (MIMO) antennas have strong coupling problems caused by small unit spacing. In order to solve the above problems, a mine high isolation tri-band MIMO antenna has been designed. By loading two L-shaped branches at both ends of a rectangular branch to form a trident monopole antenna, the antenna has tri-band features. Two trident monopole antenna units are placed symmetrically. A T-shaped branch is loaded on the metal floor between the two units. The opposite current generated by parasitic branches is used to offset the coupling current without branches. Two symmetrical rectangular slots are etched to suppress the mutual coupling caused by surface waves on the floor by changing the current distribution on the floor. The high isolation of the antenna throughout the entire band is achieved. The simulation results show that the antenna operates in frequency bands of 1.85-2.70, 3.24-3.99, 4.65-5.80 GHz, can effectively covering coal mines' underground WiMAX/WiFi/4G/5G NR operating band. The isolation of the antenna in three bands is greater than 20, 22, 22 dB, respectively. It is 11, 9, 10 dB higher than the isolation of the antenna before decoupling; The envelope correlation coefficient is less than 0.2, indicating good diversity performance. The antenna has stable gain variation within the operating band and good omnidirectional radiation features. This antenna has the advantages of simple and compact structure, easy processing, and low profile. It has a wide range of application scenarios in wireless communication in coal mines.

     

/

返回文章
返回