基于漏磁检测的矿用钢丝绳励磁装置

Excitation device for mining steel wire rope based on magnetic flux leakage detection

  • 摘要: 针对目前研究未考虑工程应用背景下钢丝绳摆动对励磁装置的影响,导致钢丝绳漏磁检测效果不理想的问题,设计了一套矿用钢丝绳励磁装置。通过建立钢丝绳仿真模型,仿真研究了不同气隙、提离值对钢丝绳漏磁场的影响,发现增大气隙或提离值均会降低钢丝绳漏磁场磁感应强度,影响钢丝绳漏磁检测结果。但实际应用中矿用钢丝绳摆动幅度大且易污染,因此钢丝绳励磁装置的气隙和提离值不宜过小。在考虑工程适用的条件下,设置气隙为6 mm、提离值为5 mm,进一步仿真分析永磁体厚度与长度、磁极间距、衔铁厚度对钢丝绳漏磁场的影响,发现永磁体厚度与长度对钢丝绳漏磁场影响最大,磁极间距对钢丝绳漏磁场影响较小,衔铁厚度对钢丝绳漏磁场的影响可忽略不计。基于仿真结果并考虑经济性和便携性,设置钢丝绳励磁装置参数:永磁体厚度为10 mm、永磁体长度为30 mm、磁极间距为180 mm、衔铁厚度为10 mm。动态仿真结果表明,钢丝绳漏磁场磁感应强度峰峰值达0.9 mT,说明该励磁装置能够保证损伤处产生较高的漏磁。实验结果表明,漏磁信号在钢丝绳不同断丝处均出现了明显波动,说明该励磁装置具有良好的励磁效果,可准确检测出钢丝绳断丝损伤。

     

    Abstract: The current research does not consider the influence of wire rope swing on the excitation device in the context of engineering applications, resulting in unsatisfactory detection results. In order to solve this problem, a set of mining wire rope excitation devices has been designed. Through the establishment of the wire rope simulation model, the influence of different air gap and lift off value on the magnetic leakage field of wire rope is simulated and studied. It is found that increasing the air gap or lift off value will reduce the magnetic induction intensity of the magnetic leakage field of the wire rope and affect the magnetic leakage detection results of the wire rope. However, in practical applications, the swing amplitude of mining wire ropes is large and the ropes are easy to be polluted. Therefore, the air gap and lift off value of the wire rope excitation device should not be too small. Under the conditions of considering engineering applicability, the air gap is set to 6 mm and the lift off value is set to 5 mm. Further simulation analysis is conducted on the effects of permanent magnet thickness and length, magnetic pole spacing, and armature thickness on the leakage magnetic field of steel wire ropes. It is found that the thickness and length of permanent magnets have the greatest influence on the leakage magnetic field of steel wire ropes. The magnetic pole spacing has a small influence on the leakage magnetic field of steel wire ropes. The influence of armature thickness on the leakage magnetic field of steel wire ropes can be ignored. Based on the simulation results and considering economy and portability, the parameters of the wire rope excitation device are set. The permanent magnet thickness is set to 10 mm, the permanent magnet length is set to 30 mm, the magnetic pole spacing is set to 180 mm, and the armature thickness is set to 10 mm. The dynamic simulation results show that the peak-to-peak value of the magnetic flux density of the wire rope magnetic leakage field reaches 0.9 mT. It indicates that the excitation device can ensure high magnetic leakage at the damage. The experimental results show that the magnetic flux leakage signal shows significant fluctuations at different broken wire locations of the steel wire rope. It indicates that the excitation device has a good excitation effect and can accurately detect broken wire damage of the steel wire rope.

     

/

返回文章
返回