Deformation analysis and support optimization of adit surrounding rock under overburden load disturbance
-
摘要: 传统的收敛仪、三维激光扫描等矿山巷道围岩变形监测技术无法满足复杂工程全面监测需求,实时及自动化监测程度低,且不具备长距离、高精度和大面积监测能力,而现有光纤传感技术仅针对巷道围岩的单一参量进行监测,无法全面分析巷道围岩稳定状况。以某煤矿主平硐为工程背景,采用数值模拟研究了平硐上方填土前后的围岩稳定性,结果表明:填土工程导致平硐两帮围岩支承压力升高,且呈不对称分布;顶板最大下沉量由填土前的8.3 mm增至22.1 mm,最大底鼓量由4.0 mm增至8.5 mm,两帮移近量最大增幅为16.2 mm;围岩变形量与支承压力对应性较强,呈现随平硐上方填土厚度增大而增大的特征。采用光纤布拉格光栅(FBG)传感器构建了平硐围岩变形监测系统,在平硐断面设置FBG传感器监测平硐拱顶裂缝张开度、顶底板及两帮变形量、断面应力应变等,通过实时光谱图分析围岩局部变形情况,结果表明平硐在现有料石砌碹支护状态下,受上覆载荷扰动影响,顶板受压明显,顶板最大下沉量约为30 mm,形成约2 mm宽的裂缝,且监测结果与数值模拟、现场观测结果相符,验证了基于FBG的平硐围岩稳定性监测方法的有效性。根据监测结果,针对平硐支护薄弱处提出了锚杆+T型钢板的补强支护方案,通过数值模拟对其支护效果进行验证,结果表明优化支护方案后,在覆岩载荷扰动下平硐顶板最大下沉量为11.3 mm,两帮最大移近量为12.04 mm,围岩变形量平均降幅达48.8%,提高了围岩稳定性。Abstract: The traditional convergence instrument, 3D laser scanning and other monitoring technologies for the deformation of surrounding rock in the mine roadway can not meet the comprehensive monitoring requirements of complex projects. The technologies have low real-time and automatic monitoring degree, and do not have the capability of long-distance, high-precision and large-area monitoring. The existing optical fiber sensing technology only monitors the single parameter of the surrounding rock in the roadway. It can not comprehensively analyze the stability of the surrounding rock in the roadway. Taking the main adit of a coal mine as the engineering background, the stability of surrounding rock before and after the filling above the adit is studied by numerical simulation. The results show that the filling engineering causes the bearing pressure of surrounding rock on both sides of the adit to rise with asymmetric distribution. The maximum subsidence of the top plate increases from 8.3 mm before filling to 22.1 mm. The maximum floor heave increases from 4.0 mm to 8.5 mm. The maximum increase of the displacement of the two sides is 16.2 mm. The deformation of the surrounding rock corresponds strongly to the bearing pressure, which increases with the thickness of the filling above the adit. The fiber Bragg grating (FBG) sensor is used to construct the adit surrounding rock deformation monitoring system. The FBG sensor is set at the adit section to monitor the opening of the adit arch crown crack, the deformation of the roof, floor and both sides, and the stress and strain of the section. The local deformation of the surrounding rock is analyzed through the real-time spectrum. The results show that the adit roof is obviously under pressure under the influence of the disturbance of the overburden load under the existing condition of stone masonry arch support. The maximum subsidence of the roof is about 30 mm, forming a crack about 2 mm wide. The monitoring results are consistent with the numerical simulation and field observation results. The result verifies the effectiveness of the FBG-based adit surrounding rock stability monitoring method. According to the monitoring results, the reinforcement support scheme of bolt+T-shaped steel plate is proposed for the weak part of the adit support. The support effect is verified by numerical simulation. The results show that after the optimized support scheme, the maximum subsidence of the adit roof under the disturbance of overburden load is 11.3 mm. The maximum displacement of the two sides is 12.04 mm, and the average reduction of the surrounding rock deformation is 48.8%. The scheme improves the stability of the surrounding rock.
-
0. 引言
为了减少巷道掘进量,缓解采掘接替,提高煤炭采出率,近年来沿空留巷技术在很多煤矿得到广泛应用,并取得了较好的经济效益。但工作面连续回采过程中会形成多个相连采空区,使采空区瓦斯治理更加复杂[1-3]。在实际作业中,对于Y型通风连续回采工作面,沿空留巷设挡矸架控顶挂模,挡矸架置于采空区碎煤网兜和柔模墙之间,除朝工作面开口外,采空区和架尾均被碎煤网兜包裹,另一侧有柔模墙阻隔,呈“抽屉”状。挡矸架内风流不畅,瓦斯不仅容易积聚,还很难稀释吹散,导致超限报警频繁[4-6]。
许多学者针对回风隅角和挡矸架内瓦斯积聚问题进行了研究。孙荣军等[7]提出大直径一次成孔技术,以进一步提高高位定向钻孔的一次成孔直径、钻进效率、钻孔深度和钻孔利用时间,提高高位钻孔经济性和瓦斯抽采效果。许石青等[8]对贵州省六盘水市盘江煤矿23125工作面232石门钻场采空区垮落带、断裂带范围进行确认,并以此范围为参考对高位定向钻孔进行优化设计,优化后的垮落带和断裂带位置可以实现长距离定向抽采采空区瓦斯。邹炜[9]对大孔径钻孔合理布置间距进行了研究,通过优化钻孔布置间距解决了上隅角瓦斯浓度超限问题。年军等[10]探索了以孔代巷合理布孔间距,发现钻孔距离工作面太近或太远均不利于对上隅角瓦斯的控制。罗如强等[11]首次采用超大钻孔大流量低负压抽采采空区瓦斯,现场考察应用效果良好,有效解决了高瓦斯矿井上隅角瓦斯频繁超限和采空区瓦斯治理难题,可在条件适合的煤与瓦斯突出矿井中推广应用。
目前针对回风隅角和挡矸架内瓦斯积聚问题的解决方案,抽采能力较为分散,无法实现对采空区的持续抽采,难以保证治理效果。Y型通风连续回采工作面由于采用沿空留巷节省了工作面之间的保护煤柱,随着工作面回采,采空区会扩大、连通,回风隅角和挡矸架内瓦斯积聚问题更加严峻。针对Y型通风连续回采工作面采空区瓦斯治理难题,本文以山西兰花集团有限公司东峰煤矿3号煤层二采区为研究背景,提出跨工作面采空区瓦斯抽采技术。在相邻工作面回风巷施工定向长钻孔,对回采工作面采空区进行跨工作面瓦斯抽采,可有效解决工作面瓦斯超限问题,保障工作面顺利回采,为采空区瓦斯抽采方式提供了新思路。
1. 工程背景
东峰煤矿位于山西省高平市,矿井设计生产能力为120 Mt/a,属于高瓦斯矿井。全矿井划分为4个采区,矿井可采煤层共3层,现阶段主采3号煤层,采用综采放顶煤开采方法,采用全部垮落法管理顶板,通风方式为柔模留巷Y型通风。目前3201工作面已完成回采,3202工作面正在回采,由于采用沿空留巷节省了工作面之间保护煤柱,3202工作面采空区与3201工作面采空区仅有柔模墙体,采空区随着工作面回采会扩大、联通。在柔模墙体破坏失去承载能力后,3201工作面采空区顶板有可能进一步垮落,瓦斯被突然挤出而涌入3202回采工作面,造成3202回采工作面瓦斯超限。
东峰煤矿3号煤层二采区沿底板等高线由低往高逐个布置工作面,全部沿空留巷放顶煤回采,沿空留巷连续回采工作面新老采空区瓦斯勾连涌出如图1所示。首采工作面回采结束,下一工作面开始回采后,受到二次采动影响,老采空区与新采空区勾连,形成大采空区。随着采空区范围越来越大,受初次来压和周期来压的采动影响,新老采空区及其顶板断裂带瓦斯在风流及瓦斯运移规律影响下,会瞬间大量涌入工作面及其回风流,造成瓦斯超限报警甚至酿成事故。
2. 跨工作面定向长钻孔设计
2.1 层位高度选择
3号煤层二采区平均厚度为5.93 m,预计垮落带最大高度为29.65 m。泥岩、砂岩互层顶板的断裂带高度为[12]
$$ {H_{\text{f}}} = \frac{{100M}}{{3.3n + 3.8}} + 5.1 $$ (1) 式中:M为累计采厚,M=5.93 m;n为煤分层数,n=1。
理论分析表明,裂隙带中下部横向、竖向裂隙发育,渗透率增加最为明显,是高位钻孔布置的最佳区域。受到卸压影响,裂隙带越靠近下方渗透率越高[13-15]。因此,钻孔终孔层位可设置在垮落带上部、断裂带下部,即高度为30~50 m,东峰煤矿3号煤层顶板上方30~40 m范围主要为中粒、细粒砂岩,可满足定向长钻孔施工要求。
在3202工作面辅助进风巷开展高位钻孔试验,对5号、6号和7号3个钻场的走向高位钻孔抽采瓦斯浓度进行统计,如图2所示,其中,1号、2号、3号、4号钻孔终孔层位高度分别为35,30 ,25,20 m,向3202工作面内错距离分别为28,20,15,10 m。可看出钻孔距煤层顶板高度为30~35 m时的抽采效果明显优于20~25 m的抽采效果。
2.2 内错距离选择
在水平方向上,采场覆岩采动裂隙发育区域集中在类似“O”型的椭圆断裂带内。由于回风巷风压低,采空区瓦斯向低压端运移,瓦斯相对富集[16-18]。因此,高位抽采钻孔布置在工作面中上部、靠近回风巷的位置抽采效果好。
3202工作面回风侧卸压角为80~90°,3号煤层倾角较小,卸压角为80°,距离3202工作面轨道巷40 m时,卸压线距回风巷为7.1 m,钻孔向3202工作面内错距离过小时,容易导致钻孔通过裂隙与风巷贯通,钻孔无法发挥有效抽采作用。由图2可知,3202工作面1号、2号走向高位钻孔瓦斯抽采浓度相对较高,其内错距离分别为28,20 m。
综上可知,跨工作面定向长钻孔终孔位置在水平方向上距轨道巷20~40 m。
2.3 钻孔密度分析
采空区由于煤体回采会产生空隙空间[16-18],对于长度为135 m、采放高度为5.93 m的回采工作面,每推进100 m,预计产生采空区空隙空间80 055 m3。假设在采空区遗煤开始瓦斯解吸之前,工作面风流漏风将此空隙空间充满,则100 m范围采空区含空气80 055 m3。
根据3201工作面瓦斯含量实测结果和现场实际抽采情况可知,煤层瓦斯含量为4.7 m3/t,瓦斯抽采率为0.35,则采空区遗煤瓦斯含量为3.1 m3/t。取3号煤层不可解吸瓦斯量为2 m3/t,则采空区遗煤可解吸瓦斯量为1.1 m3/t。取工作面回采率为0.87,煤体密度为1.42 t/m3,则回采方向长度为100 m、工作面长度为135 m、煤层厚度为5.93 m的采空区遗煤为14 778 t,可解吸瓦斯量为16 256 m3。则100 m推进长度的采空区内瓦斯量达16 256 m3。
在3202工作面回采时可能造成柔模墙体破坏、支撑应力改变,诱发顶板大面积垮落。采空区瓦斯抽采的目的是将混合瓦斯气体尽量抽取,在顶板大面积垮落后减少可扇出气体体积[19-21]。3201采空区两侧同时存在支撑体,假设柔模墙体破坏造成空隙空间压缩,取影响范围可达采空区一半,即压缩空间为采空区空隙空间一半,则需抽采瓦斯量为(80 055+16 256)×0.5=48 156 m3。3201工作面高位钻孔抽采量变化如图3所示。
由图3可看出,高位钻孔一般抽采量在10~60 m3/min,即每个钻孔抽采量达2.5~15 m3/min。由于采空区岩体在工作面回采之后有压实趋势,渗透率减小,取钻孔抽采量低值作为跨工作面抽采采空区瓦斯定向长钻孔抽采量,即为2.5 m3/min。由3201工作面高位钻孔抽采浓度变化可知,其高浓度抽采期可持续1个月以上。钻孔有效抽采时间为1个月时,取采空区混合气体抽采率为50%,抽采总量为2.5×60×12×30×2=108 000 m3。则100 m推进长度范围的采空区所需钻孔数量为48 156/108 000≈0.5个,即每个钻孔可抽采范围为200 m。
3. Y型通风上隅角瓦斯治理实践
3.1 跨工作面采空区抽采技术
根据采空区渗流场变化规律和高位钻孔抽采效果分析可知,跨工作面抽采采空区瓦斯的定向长钻孔终孔位置距煤层顶板高度为30~40 m,向3202工作面内错距离为20~40 m。根据煤层标高、地质条件影响及钻孔终孔目标位置,设计定向长钻孔钻进轨迹。根据钻孔密度分析,为在3202工作面回采初期保障采空区瓦斯抽采能力,缩短了钻孔间距,试验钻孔间距分别为50,50,100,100 m,为了提高钻孔利用率,减少施工工程量,采用1个主孔、1个分支孔的布置方式。
由于跨工作面定向长钻孔在不受采动影响的相邻工作面旁边回风巷开口,即使工作面回采之后形成采空区,也无需撤管,可实现持续抽采新老采空区中上部顶板断裂带积聚瓦斯,为Y型通风连续回采工作面瓦斯治理开辟新的通道。持续抽采上部断裂带瓦斯,能有效减少采空区、挡矸架和回风隅角瓦斯浓度,避免挡矸架瓦斯积聚造成超限报警及其他瓦斯事故。Y型通风工作面钻孔抽采布置如图4所示。
3.2 跨工作面定向长钻孔抽采效果
在3203工作面回风巷开展跨工作面定向长钻孔的试验,以回风5号钻场为例,钻场内布置2个跨工作面高位钻孔(1号孔、2号孔),每个跨工作面高位钻孔包括1个主孔和1个分支孔,采用低负压管路抽采,抽采负压达28.5 kPa,钻孔布置参数见表1。
表 1 高位抽采钻孔布置参数表Table 1. Layout parameters of high level extraction boreholes孔
号开孔高度/m 孔深/m 方位角/(°) 终孔层位高度/m 钻孔内错距离/m 1 4 639 286 40 35 1−1 4 561 325 38 30 2 4 573 274 35 28 2−1 4 510 354 30 25 每个跨工作面抽采采空区的定向长钻孔施工完成后,每天观测其瓦斯体积分数、流量,得到抽采瓦斯体积分数、抽采纯量随时间变化曲线,如图5所示。
由图5可看出,1号钻孔瓦斯抽采体积分数达3.9%~16.8%,瓦斯抽采纯量达0.26~2.84 m3/min;2号钻孔瓦斯抽采体积分数达1.8%~19.2%,瓦斯抽采纯量达0.09~2.65 m3/min。
现场对采空区瓦斯抽采后,挡矸架的瓦斯体积分数由0.67%降至0.22%,回风流瓦斯体积分数由0.47%降至0.18%,回采期间3202工作面瓦斯体积分数保持在0.6%以下,符合安全标准,如图6所示。跨工作面采空区瓦斯抽采技术有效降低了挡矸架与回风流的瓦斯浓度,对采空区瓦斯治理有明显的效果。
4. 结论
1) 在东峰煤矿现场进行跨工作面采空区抽采工程试验,当高位定向钻孔距离巷道顶板30~40 m,水平方向距离轨道巷20~40 m时抽采效果理想。
2) 定向长钻孔持续抽采上部断裂带瓦斯,挡矸架瓦斯体积分数由0.67%降至0.22%,回风流瓦斯体积分数由0.47%降至0.18%,3202回采工作面瓦斯体积分数保持在0.6%以下,瓦斯治理效果显著。
3) 跨工作面采空区瓦斯抽采技术能有效减小采空区、挡矸架和回风隅角瓦斯浓度,避免挡矸架瓦斯积聚造成超限报警及其他瓦斯事故。
-
表 1 平硐围岩稳定性监测量
Table 1 Monitoring parameters of adit surrounding rock stability
监测量 传感器类型 监测内容 断面应力、应变 FBG表面应变计 巷道表面应变 拱顶裂缝张开度 FBG位移计 拱顶裂缝张开度 支护结构内部应力 FBG土压力计 平硐支护结构受力及变形情况 顶底板及两帮变形量 FBG移近量传感器 顶底板及两帮位移变化 表 2 FBG传感器布置位置
Table 2 Arranging locations of FBG sensors
传感器类型 传感器位置 FBG表面应变计 平硐顶底板、两帮和肩部 FBG位移计 平硐拱顶中央 FBG土压力计 平硐两帮拱脚 FBG移近量传感器 平硐顶底板和两帮 表 3 各断面FBG位移计监测精度范围
Table 3 Monitoring precision range of FBG displacement meter in each section
断面编号 传感器位置 零点值/mm 波动范围/mm 标定值/mm 1 靠近平硐口 −0.145 7 −0.241 8~0.142 6 ±1 靠近大巷 −0.009 8 −0.410 7~0.377 7 2 靠近平硐口 −0.056 5 −0.193 8~0.306 8 3 靠近平硐口 −0.134 8 −0.209 1~0.183 9 4 靠近平硐口 −0.085 7 −0.104 9~0.133 4 靠近大巷 0.005 3 −0.150 5~0.236 8 表 4 FBG传感器重复测试精度
Table 4 Repetitive test precision of FBG sensors
传感器类型 理论精度 重复测试精度 FBG表面应变计 ±4 μɛ ±50 μɛ FBG位移计 ±1 mm ±1 mm FBG土压力计 ±0.01 MPa ±0.2 MPa FBG移近量传感器 ±2 mm ±12 mm -
[1] 张桂生,毛江鸿,何勇,等. 基于BOTDA的隧道变形监测技术研究[J]. 公路交通科技(应用技术版),2009,5(8):190-192. ZHANG Guisheng,MAO Jianghong,HE Yong,et al. Research on tunnel deformation monitoring technology based on BOTDA[J]. Highway Traffic Technology(Applied Technology Edition ),2009,5(8):190-192.
[2] 柴敬,张丁丁,李毅. 光纤传感技术在岩土与地质工程中的应用研究进展[J]. 建筑科学与工程学报,2015,32(3):28-37. DOI: 10.3969/j.issn.1673-2049.2015.03.005 CHAI Jing,ZHANG Dingding,LI Yi. Research progress of optical fiber sensing technology in geotechnical and geological engineering[J]. Journal of Architecture and Civil Engineering,2015,32(3):28-37. DOI: 10.3969/j.issn.1673-2049.2015.03.005
[3] 程刚,王振雪,朱鸿鹄,等. 基于分布式光纤感测的岩土体变形监测研究综述[J]. 激光与光电子学进展,2022,59(19):51-70. CHENG Gang,WANG Zhenxue,ZHU Honghu,et al. Research review of rock and soil deformation monitoring based on distributed fiber optic sensing[J]. Laser & Optoelectronics Progress,2022,59(19):51-70.
[4] 柴敬,刘永亮,袁强,等. 矿山围岩变形与破坏光纤感测理论技术及应用[J]. 煤炭科学技术,2021,49(1):208-217. CHAI Jing,LIU Yongliang,YUAN Qiang,et al. Theory-technology and application of optical fiber sensing on deformation and failure of mine surrounding rock[J]. Coal Science and Technology,2021,49(1):208-217.
[5] 柴敬,杜文刚,袁强,等. 物理模型试验光纤传感技术测试方法分析[J]. 西安科技大学学报,2018,38(5):728-736. CHAI Jing,DU Wengang,YUAN Qiang,et al. Analysis of test method for physical model test based on optical fiber sensing technology detection[J]. Journal of Xi'an University of Science and Technology,2018,38(5):728-736.
[6] 李延河, 杨战标, 朱元广, 等. 基于弱光纤光栅传感技术的围岩变形监测研究[J/OL]. 煤炭科学技术: 1-9[2022-09-13]. http://kns.cnki.net/kcms/detail/11.2402.td.20220826.1716.006.html. LI Yanhe, YANG Zhanbiao, ZHU Yuanguang, et al. Research on deformation monitoring of surrounding rock based on weak fiber grating sensing technology[J/OL]. Coal Science and Technology: 1-9[2022-09-13]. http://kns.cnki.net/kcms/detail/11. 2402.td.20220826.1716.006.html.
[7] 兰建功,张红俊. 基于光纤光栅传感器的巷道矿压监测方法研究[J]. 煤炭技术,2022,41(2):121-124. LAN Jiangong,ZHANG Hongjun. Research on roadway ground pressure monitoring method based on grating fiber sensor[J]. Coal Technology,2022,41(2):121-124.
[8] 汤树成,张杰,张恒,等. 光纤光栅传感技术在煤矿安全监测系统中的应用[J]. 工矿自动化,2014,40(7):41-44. TANG Shucheng,ZHANG Jie,ZHANG Heng,et al. Application of fiber gratting sensing technology in mine safety monitoring system[J]. Industry and Mine Automation,2014,40(7):41-44.
[9] 李锦辉, 张俊齐, 魏强, 等. 基于自感知FRP锚杆的隧道围岩变形监测与松动圈识别[J/OL]. 西南交通大学学报: 1-8[2022-09-13]. http://kns.cnki.net/kcms/detail/51.1277.U.20220520. 1839.010.html. LI Jinhui, ZHANG Junqi, WEI Qiang, et al. Tunnel surrounding rock deformation monitoring and loose zone identification based on self-sensing FRP anchor[J/OL]. Journal of Southwest Jiaotong University: 1-8[2022-09-13]. http://kns.cnki.net/kcms/detail/51.1277.U.20220520.1839.010.html.
[10] 张宁博,王建达,秦凯,等. 基于一孔多点式应力与位移监测系统的掘进巷道冲击危险性评价[J]. 煤炭学报,2020,45(增刊1):140-149. DOI: 10.13225/j.cnki.jccs.2019.0952 ZHANG Ningbo,WANG Jianda,QIN Kai,et al. Evaluation of coal bump risk in excavation roadway based on multi-point stress and displacement monitoring system[J]. Journal of China Coal Society,2020,45(S1):140-149. DOI: 10.13225/j.cnki.jccs.2019.0952
[11] 刘德军,张强勇,陈旭光,等. 深部巷道围岩破裂模型试验变形量测研究[J]. 四川大学学报(工程科学版),2010,42(4):71-77. LIU Dejun,ZHANG Qiangyong,CHEN Xuguang,et al. Study on deformation measurement in surrounding rock failure model test of deep roadway[J]. Journal of Sichuan University(Engineering Science Edition),2010,42(4):71-77.
[12] 侯公羽,胡涛,徐桂城,等. 基于分布式光纤技术的煤矿巷道顶板监测系统[J]. 工矿自动化,2020,46(1):1-6. HOU Gongyu,HU Tao,XU Guicheng,et al. Coal mine roadway roof monitoring system based on distributed optical fiber technology[J]. Industry and Mine Automation,2020,46(1):1-6.
[13] 朱少华,岳音,韩洪波,等. 光纤传感技术在相似材料模型试验中的应用[J]. 传感技术学报,2020,33(4):621-628. DOI: 10.3969/j.issn.1004-1699.2020.04.022 ZHU Shaohua,YUE Yin,HAN Hongbo,et al. Application of optical fiber sensing technology in similar materials model test[J]. Chinese Journal of Sensors and Actuators,2020,33(4):621-628. DOI: 10.3969/j.issn.1004-1699.2020.04.022
[14] 刘少林,张丹,张平松,等. 基于分布式光纤传感技术的采动覆岩变形监测[J]. 工程地质学报,2016,24(6):1118-1125. LIU Shaolin,ZHANG Dan,ZHANG Pingsong,et al. Deformation monitoring of overburden based on distributed optical fiber sensing[J]. Journal of Engineering Geology,2016,24(6):1118-1125.
[15] 李虎威,方新秋,梁敏富,等. 基于光纤光栅的围岩应力监测技术研究[J]. 工矿自动化,2015,41(11):17-20. DOI: 10.13272/j.issn.1671-251x.2015.11.005 LI Huwei,FANG Xinqiu,LIANG Minfu,et al. Research on monitoring technology of surrounding rock stress based on fiber grating[J]. Industry and Mine Automation,2015,41(11):17-20. DOI: 10.13272/j.issn.1671-251x.2015.11.005
[16] 孙健. 光纤光栅位移传感器在边坡监测中的应用研究[J]. 工矿自动化,2014,40(2):95-98. DOI: 10.13272/j.issn.1671-251x.2014.02.025 SUN Jian. Application research of fiber grating displacement sensor in slope monitoring[J]. Industry and Mine Automation,2014,40(2):95-98. DOI: 10.13272/j.issn.1671-251x.2014.02.025
[17] 苏胜昔,杨昌民,范喜安. 光纤光栅传感技术在高速公路隧道围岩变形实时监测中的应用[J]. 工程力学,2014,31(增刊1):134-138,144. SU Shengxi,YANG Changmin,FAN Xi'an. Application of fiber Bragg grating sensor technology in highway tunnel surrounding rock deformation and real-time monitoring[J]. Engineering Mechanics,2014,31(S1):134-138,144.
[18] 何勇,姜帅,毛江鸿,等. 结构裂缝的分布式光纤监测方法及试验研究[J]. 土木建筑与环境工程,2012,34(1):1-6. HE Yong,JIANG Shuai,MAO Jianghong,et al. Cracking monitoring method and experiment with distributed fiber sensor[J]. Journal of Civil,Architectural & Environmental Engineering,2012,34(1):1-6.
[19] 董鹏,夏开文,于长一,等. 浅埋隧道覆岩变形沉降的分布式光纤监测与分析[J]. 防灾减灾工程学报,2019,39(5):724-732. DOI: 10.13409/j.cnki.jdpme.2019.05.005 DONG Peng,XIA Kaiwen,YU Changyi,et al. Monitoring and analysis of stratum deformation and subsidence overlying a shallow tunnel using distributed optical fiber sensing technology[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(5):724-732. DOI: 10.13409/j.cnki.jdpme.2019.05.005
[20] 刘泉声,王俊涛,肖龙鸽,等. OFDR光纤传感技术在十字岩柱暗挖法物理模型试验中的应用[J]. 岩石力学与工程学报,2017,36(5):1063-1075. DOI: 10.13722/j.cnki.jrme.2016.0956 LIU Quansheng,WANG Juntao,XIAO Longge,et al. Application of OFDR-based sensing technology in geo-mechanical model test on tunnel excavation using cross rock pillar method[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(5):1063-1075. DOI: 10.13722/j.cnki.jrme.2016.0956
[21] 张宇,史波,汤国强. 光纤光栅传感技术在洞室围岩变形监测中的应用[J]. 人民长江,2019,50(8):126-130. DOI: 10.16232/j.cnki.1001-4179.2019.08.022 ZHANG Yu,SHI Bo,TANG Guoqiang. Application of fiber grating sensing technology in deformation monitoring of cavern surrounding rock[J]. Yangtze River,2019,50(8):126-130. DOI: 10.16232/j.cnki.1001-4179.2019.08.022
-
期刊类型引用(7)
1. 马凯. 瓦斯治理效果对顶板孔布置模式响应研究. 煤炭技术. 2025(02): 100-103 . 百度学术
2. 童校长,文虎,徐鹤翔,刘厅,温鸿达,程小蛟. 地面井掏煤造穴卸压增透技术及工程应用. 西安科技大学学报. 2025(01): 61-73 . 百度学术
3. 李飞. 高瓦斯特长公路隧道阶段施工通风方案研究. 铁道建筑技术. 2024(03): 145-148+201 . 百度学术
4. 刘光明. 组合封堵气囊治理回风隅角瓦斯技术. 陕西煤炭. 2024(07): 43-48 . 百度学术
5. 王钰剑. 新景矿采煤工作面高位定向长钻孔瓦斯治理技术. 江西煤炭科技. 2024(04): 164-166 . 百度学术
6. 程建未. 超长定向钻孔双侧瓦斯抽采效果及数值模拟研究. 煤炭经济研究. 2024(S1): 120-123 . 百度学术
7. 苏生. 基于COMSOL的高位大直径长钻孔瓦斯抽采模拟研究. 能源与环保. 2023(08): 24-28 . 百度学术
其他类型引用(0)