Automation software design and application for fully mechanized working face
-
摘要: 针对综采工作面高效开采需求,以及开采过程中面临的自动化软件产品缺乏,通用的工业组态软件缺乏行业针对性、设备接口协议繁多、对业务场景的适应性不足等问题,提出了一种面向综采工作面的自动化软件设计方案。面向综采工作面的自动化软件包括井下服务端、地面服务端、地面客户端3层架构。井下服务端是整个架构的基础,由驱动层、数据库模块、模型逻辑层、数据可视化层构成。驱动层负责接入适配工作面的各类设备及通信协议,实现与各设备的实时双向通信。数据库模块包括实时数据库和历史数据库,实时数据库为驱动层提供实时读写服务,历史数据库为驱动层提供数据记录服务。针对煤矿开采业务场景构建了综采工作面的数据模型,模型逻辑层用以解决软件缺乏行业针对性和适应性不足的问题。模型逻辑层通过与驱动层交互实现设备数据的实时上传和控制指令的实时下发,为数据可视化提供数据驱动,并且通过加载控制分析组件,完成各类设备的协同控制和数据分析功能。数据可视化层集成了多种数据展示技术,便于对数据进行多维度展示。实际应用效果表明:① 在辅助生产方面,该自动化软件应用后,可以实现对工作面工况信息和设备状态的连续在线实时监测,支持对工作面设备的远程集中控制,将井下需要在各设备附近的多人值守减少至2人在监控中心远程集中监控,有效减少了操作人员数量。② 在提升自动化的高级应用方面,该自动化软件应用后,对各系统数据进行分类融合,实现了多类设备自动化协同控制功能,提升了综采工作面自动化水平。
-
关键词:
- 综采工作面自动化系统 /
- 自动化软件 /
- 综采设备 /
- 井下服务端 /
- 数据可视化
Abstract: In view of the demand for efficient mining of fully mechanized working face, the lack of automation software products in the mining process, the lack of industry pertinence of general industrial configuration software, the variety of equipment interface protocols and the lack of adaptability to business scenes, a design scheme of automation software for fully mechanized working face is proposed. The automation software of fully mechanized working face comprises a three-layer structure of an underground server, a ground server and a ground client. The underground server is the foundation of the whole architecture, which is composed of a driver layer, a database module, a model logic layer and a data visualization layer. The driver layer is responsible for accessing all kinds of equipment and communication protocols adapted to the working face, and realizing real-time two-way communication with each piece of equipment. The database module comprises a real-time database and a historical database. The real-time database provides real-time read-write service for the driver layer, and the historical database provides data recording service for the driver layer. The data model of the fully mechanized working face is constructed according to the business scene of coal mining. The logic layer of the model is used to solve the problem of lack of industry pertinence and adaptability of software. The model logic layer realizes real-time uploading of equipment data and real-time issuing of control instructions through interaction with the equipment layer. The layer provides data drive for data visualization. The layer completes collaborative control and data analysis functions of various equipment through loading control analysis components. The data visualization layer integrates a variety of data display technologies to facilitate the multi-dimensional display of data. The practical application results show the following points. ① In the aspect of auxiliary production, after the application of the automation software, the continuous online real-time monitoring of working condition information and equipment state of the working face can be realized. The remote centralized control of the working face equipment is supported. The number of underground operators who need to be on duty near each piece of equipment is reduced to two persons in the monitoring center for remote centralized monitoring. This effectively reduces the number of operators. ② In the advanced application of automation, after the application of the automation software, the data of each system is classified and fused. The automatic collaborative control function of multiple types of equipment is realized. The automation level of the fully mechanized working face is improved. -
-
-
[1] 李全生. 我国井工煤矿开采技术现状和发展展望[J]. 煤矿开采,2002,7(3):1-5. DOI: 10.3969/j.issn.1006-6225.2002.03.001 LI Quansheng. Present situation of underground coal mining technology and its prospects in China[J]. Coal Mining Technology,2002,7(3):1-5. DOI: 10.3969/j.issn.1006-6225.2002.03.001
[2] 张世龙,张民波,朱仁豪,等. 近5年我国煤矿事故特征分析及防治对策[J]. 煤炭与化工,2021,44(8):101-106,109. ZHANG Shilong,ZHANG Minbo,ZHU Renhao,et al. Analysis of the characteristics of China's mine accidents in the past five years and countermeasures for prevention and control[J]. Coal and Chemical Industry,2021,44(8):101-106,109.
[3] 张胜利,汤家轩,王猛. “双碳”背景下我国煤炭行业发展面临的挑战与机遇[J]. 中国煤炭,2022,48(5):1-5. DOI: 10.3969/j.issn.1006-530X.2022.05.001 ZHANG Shengli,TANG Jiaxuan,WANG Meng. Challenges and opportunities for the development of China's coal industry under the background of carbon peak and carbon neutrality[J]. China Coal,2022,48(5):1-5. DOI: 10.3969/j.issn.1006-530X.2022.05.001
[4] 李浩荡. 减碳背景下煤炭如何直面挑战[N]. 中国煤炭报, 2021-04-01(2). LI Haodang. How to face the challenges in the context of carbon reduction[N]. China Coal News, 2021-04-01(2).
[5] 王国法. 煤矿高效开采工作面成套装备技术创新与发展[J]. 煤炭科学技术,2010,38(1):63-68,106. WANG Guofa. Innovation and development of completed set equipment and technology for high efficient coal mining face in underground mine[J]. Coal Science and Technology,2010,38(1):63-68,106.
[6] 葛世荣,胡而已,裴文良. 煤矿机器人体系及关键技术[J]. 煤炭学报,2020,45(1):455-463. GE Shirong,HU Eryi,PEI Wenliang. Classification system and key technology of coal mine robot[J]. Journal of China Coal Society,2020,45(1):455-463.
[7] 刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1-15. LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1-15.
[8] 王峰. 综采无人工作面自动化开采技术研究与应用[J]. 工矿自动化,2015,41(7):5-9. WANG Feng. Research and application of automatic mining technology of unmanned fully-mechanized coal mining face[J]. Industry and Mine Automation,2015,41(7):5-9.
[9] 丁琰. 煤矿安全生产监控与通信技术分析[J]. 矿业装备,2021(4):182-183. DOI: 10.3969/j.issn.2095-1418.2021.04.090 DING Yan. Analysis of safety production monitoring and communication technology in coal mine[J]. Mining Equipment,2021(4):182-183. DOI: 10.3969/j.issn.2095-1418.2021.04.090
[10] 王国法. 煤矿综采自动化成套技术与装备创新和发展[J]. 煤炭科学技术,2013,41(11):1-5,9. WANG Guofa. Innovation and development on automatic completed set technology and equipment of fully-mechanized coal mining face[J]. Coal Science and Technology,2013,41(11):1-5,9.
[11] 任怀伟,赵国瑞,周杰,等. 智能开采装备全位姿测量及虚拟仿真控制技术[J]. 煤炭学报,2020,45(3):956-971. REN Huaiwei,ZHAO Guorui,ZHOU Jie,et al. Key technologies of all position and orientation monitoring and virtual simulation and control for smart mining equipment[J]. Journal of China Coal Society,2020,45(3):956-971.
[12] 田成金. 可视化远程干预型智能化采煤关键控制技术研究[J]. 煤炭科学技术,2016,44(7):97-102. TIAN Chengjin. Study on key control technology of visualized remote interference type intelligent mining[J]. Coal Science and Technology,2016,44(7):97-102.
[13] 刘清,韩秀琪,徐兰欣,等. 综采工作面采煤机和液压支架协同控制技术[J]. 工矿自动化,2020,46(5):43-48. LIU Qing,HAN Xiuqi,XU Lanxin,et al. Cooperrative control technology of shear and hydraulic support on fully-mechanized coal mining face[J]. Industry and Mine Automation,2020,46(5):43-48.
[14] 路正雄,郭卫,张帆,等. 基于数据驱动的综采装备协同控制系统架构及关键技术[J]. 煤炭科学技术,2020,48(7):195-205. LU Zhengxiong,GUO Wei,ZHANG Fan,et al. Collaborative control system architecture and key technologies of fully-mechanized mining equipment based on data drive[J]. Coal Science and Technology,2020,48(7):195-205.
[15] 李首滨,李森,张守祥,等. 综采工作面智能感知与智能控制关键技术与应用[J]. 煤炭科学技术,2021,49(4):28-39. LI Shoubin,LI Sen,ZHANG Shouxiang,et al. Key technology and application of intelligent perception and intelligent control in fully mechanized mining face[J]. Coal Science and Technology,2021,49(4):28-39.
[16] 黄曾华. 综采装备单机智能化向智能协同模式转型的探索研究[J]. 煤炭科学技术,2021,49(4):169-175. HUANG Zenghua. Exploration and research on transformation from intelligent single machine equipment to intelligent synergy in coal mine[J]. Coal Science and Technology,2021,49(4):169-175.
[17] 葛世荣,郝雪弟,田凯,等. 采煤机自主导航截割原理及关键技术[J]. 煤炭学报,2021,46(3):774-788. DOI: 10.13225/j.cnki.jccs.yt21.0114 GE Shirong,HAO Xuedi,TIAN Kai,et al. Principle and key technology of autonomous navigation cutting for deep coal seam[J]. Journal of China Coal Society,2021,46(3):774-788. DOI: 10.13225/j.cnki.jccs.yt21.0114
[18] 冯银辉,黄曾华,李昊. 互联网+综采自动化专家决策平台设计与应用[J]. 煤炭科学技术,2016,44(7):73-79. FENG Yinhui,HUANG Zenghua,LI Hao. Design and application of internet plus experts decision making platform to fully-mechanized mining automation[J]. Coal Science and Technology,2016,44(7):73-79.
[19] 杜毅博,赵国瑞,巩师鑫. 智能化煤矿大数据平台架构及数据处理关键技术研究[J]. 煤炭科学技术,2020,48(7):177-185. DU Yibo,ZHAO Guorui,GONG Shixin. Study on big data platform architecture of intelligent coal mine and key technologies of data processing[J]. Coal Science and Technology,2020,48(7):177-185.
[20] 葛世荣,张帆,王世博,等. 数字孪生智采工作面技术架构研究[J]. 煤炭学报,2020,45(6):1925-1936. DOI: 10.13225/j.cnki.jccs.ZN20.0327 GE Shirong,ZHNAG Fan,WANG Shibo,et al. Digital twin for smart coal mining workface:technological frame and construction[J]. Journal of China Coal Society,2020,45(6):1925-1936. DOI: 10.13225/j.cnki.jccs.ZN20.0327
-
期刊类型引用(8)
1. 谢才秀,张永菊,龙涛,陈鹏,石开仪,王市委. 不同实验设计方法在高灰分煤泥浮选优化实验中的应用. 矿产综合利用. 2021(01): 72-76+56 . 百度学术
2. 陈鹏,李子文,石开仪,张谌虎,王市委,孙维旭. 基于司盘80改性的不黏煤煤泥浮选条件探索. 矿业研究与开发. 2021(05): 146-149 . 百度学术
3. 孟正琴,陈宗素,张永菊. 正交试验法对六盘水某煤泥浮选条件优化的研究. 山东化工. 2020(01): 20-21+23 . 百度学术
4. 徐学卫. 田庄选煤厂二次浮选工艺的设计与实践. 选煤技术. 2020(03): 74-77 . 百度学术
5. 柴炳升,胡峰. 石槽村选煤厂重介质浅槽分选工艺探究. 煤炭加工与综合利用. 2020(08): 33-34+38 . 百度学术
6. 刘宸,李秋科,李大虎,高飞云,王建忠,王文才,曹钊. 基于响应曲面法的五虎山煤泥浮选条件优化研究. 选煤技术. 2020(05): 8-14 . 百度学术
7. 陈鹏,白新伟,石开仪,潘东,王成勇. 煤泥分级浮选精煤最高产率预测. 矿业研究与开发. 2020(05): 139-143 . 百度学术
8. 徐江婵,熊余,朱艳. 细粒煤泥浮选正交试验初步研究. 河南科技. 2019(34): 92-94 . 百度学术
其他类型引用(5)