留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

褶曲构造影响区内工作面开采诱冲机理及其防治研究

杨增强 刘畅 宋洁 白洋 靳会武 王大伟

杨增强,刘畅,宋洁,等. 褶曲构造影响区内工作面开采诱冲机理及其防治研究[J]. 工矿自动化,2023,49(10):151-159.  doi: 10.13272/j.issn.1671-251x.2022070073
引用本文: 杨增强,刘畅,宋洁,等. 褶曲构造影响区内工作面开采诱冲机理及其防治研究[J]. 工矿自动化,2023,49(10):151-159.  doi: 10.13272/j.issn.1671-251x.2022070073
YANG Zengqiang, LIU Chang, SONG Jie, et al. Research on the mechanism and prevention of mining induced erosion in the working face affected by fold structures[J]. Journal of Mine Automation,2023,49(10):151-159.  doi: 10.13272/j.issn.1671-251x.2022070073
Citation: YANG Zengqiang, LIU Chang, SONG Jie, et al. Research on the mechanism and prevention of mining induced erosion in the working face affected by fold structures[J]. Journal of Mine Automation,2023,49(10):151-159.  doi: 10.13272/j.issn.1671-251x.2022070073

褶曲构造影响区内工作面开采诱冲机理及其防治研究

doi: 10.13272/j.issn.1671-251x.2022070073
基金项目: 中国博士后科学基金第73批面上资助项目(2023M732969);国家自然科学基金项目(52104091);国家重点研发计划项目(2020YFB1314002);中煤科工开采研究院科创创新基金重点资助项目(KCYJY-2021-ZD-02)。
详细信息
    作者简介:

    杨增强(1987— ),男,山西长治人,讲师,博士,主要从事冲击地压灾害防治相关的研究工作,E-mail:iceiceice185@163.com

  • 中图分类号: TD324

Research on the mechanism and prevention of mining induced erosion in the working face affected by fold structures

  • 摘要: 针对褶曲构造影响区内不同工作面的倾角变化所引起的矿压显现特征多变性问题,以宝积山煤矿七采区为工程背景,采用现场调研、理论分析、数值模拟和现场工业性试验相结合的方法,对倾角变化煤层内不同工作面开采期间动静载荷进行了研究。结果表明:① 煤岩组合系统刚度值大于0的累积声发射(AE)能量较煤岩组合系统刚度值小于0的累积AE能量小,说明煤岩组合系统刚度值小于0时更易累积AE能量,且在煤岩组合系统刚度值小于0时,其绝对值越大越能够积聚更高的AE能量。② 随着煤层倾角递增,沿空巷道实体煤侧内集中静载荷降低,煤柱侧内集中静载荷增高,高位厚硬关键层发生破断所需悬顶段更长。③ 煤层倾角较小时,动静载叠加作用下沿空巷道两帮内煤岩组合系统极易诱发动态破坏II型冲击地压。煤层倾角较大时,高集中静载作用下沿空巷道煤柱侧内煤岩组合系统极易诱发静态破坏型或动态破坏I型冲击地压。④ 705综放工作面开采期间沿空巷道煤柱侧极易诱发静态破坏型或动态破坏I型冲击地压,对其实施防冲措施后的电磁辐射值降幅高达67.3%,煤岩组合系统不易诱发冲击地压。

     

  • 图  1  七采区内工作面剖面位置关系

    Figure  1.  Position relationship of working face profile in seven mining area

    图  2  不同刚度条件下煤岩组合系统应力及AE能量变化规律

    Figure  2.  Stress and AE energy variation law of coal rock combination system under different stiffness conditions

    图  3  煤层倾角为α时的平面应变力学模型

    Figure  3.  A plane strain mechanical model of when coal seam dip angle is α

    图  4  煤体对基本顶的反向支承应力分布曲线

    Figure  4.  Reverse support stress distribution curve of coal body to basic roof

    图  5  高位厚硬关键层受力模型

    Figure  5.  Force model of high and thick hard key layer

    图  6  厚硬关键层破断时的最小悬顶段长度变化曲线

    Figure  6.  Change curve of minimum suspended top section length when thick and hard key layer is broken

    图  7  低位基本顶岩层受力学模型

    Figure  7.  Mechanical model of low basic top strata

    图  8  基本顶岩层破断位置的水平间距变化曲线

    Figure  8.  Horizontal spacing change curve of the breaking position of the basic roof strata

    图  9  滑落和回转失稳系数变化曲线

    Figure  9.  Variation curve of sliding and slewing instability coefficient

    图  10  实体煤侧工作面内垂向应力空间分布云图

    Figure  10.  Spatial distribution nephogram of vertical stress in the working face of solid coal side

    图  11  煤柱侧护巷煤柱体内垂向应力空间分布云图

    Figure  11.  Spatial distribution nephogram of vertical stress in coal pillar body of coal pillar side protection roadway

    图  12  现场工业性试验方案

    Figure  12.  Site industrial test plan

    图  13  煤柱侧电磁辐射监测结果

    Figure  13.  Monitoring results of electromagnetic radiation at coal pillar side

    表  1  煤岩层物理力学参数

    Table  1.   Physical and mechanical parameters of coal and rock strata

    岩性厚度/
    m
    密度/
    (kg·m−3
    体积模
    量/GPa
    剪切模
    量/GPa
    内摩擦
    角/(°)
    内聚
    力/MPa
    粗砂岩2 62011.910.2339.3
    细砂岩62 75013.611.53810.5
    粉砂岩72 6008.97.4356.8
    细砂岩42 75013.611.53810.5
    1号煤81 3503.32.7292.1
    泥岩212 5408.45.7368.2
    砂砾岩162 34012.39.1375.2
    粉砂岩2 6509.17.8347.2
    下载: 导出CSV
  • [1] 杨增强. 复杂地质构造区诱发冲击矿压机理及防控研究[D]. 北京:中国矿业大学(北京),2018.

    YANG Zengqiang. Occurrence mechanism of rock burst and its prevention methods under complicated geological conditions[D]. Beijing:China University of Mining and Technology-Beijing,2018.
    [2] 王正义,何江. 复杂地质构造区煤岩动力灾害机制与防控研究[J]. 煤矿安全,2021,52(9):204-210.

    WANG Zhengyi,HE Jiang. Mechanism of coal-rock dynamic disasters in complex geological structure areas and its prevention[J]. Safety in Coal Mines,2021,52(9):204-210.
    [3] 闫耀东,潘俊锋,席国军,等. 综放开采见方构造区冲击危险性分析及防治研究[J]. 工矿自动化,2021,47(10):7-13.

    YAN Yaodong,PAN Junfeng,XI Guojun,et al. Impact hazard analysis and prevention research of square structure area in fully mechanized working face[J]. Industry and Mine Automation,2021,47(10):7-13.
    [4] 陈国祥. 最大水平应力对冲击矿压的作用机制及其应用研究[D]. 徐州:中国矿业大学,2009.

    CHEN Guoxiang. Mechanism research of the maximum horizontal stress on rockburst and its application[D]. Xuzhou:China University of Mining and Technology,2009.
    [5] 赵善坤,邓志刚,季文博,等. 多期构造运动影响下区域地应力场特征及其对冲击地压的影响[J]. 采矿与安全工程学报,2019,36(2):306-314.

    ZHAO Shankun,DENG Zhigang,JI Wenbo,et al. Effects of multi-stage tectonic movement on regional tectonic stress characteristics and rockburst[J]. Journal of Mining & Safety Engineering,2019,36(2):306-314.
    [6] 谢克坷,沈泽,黄练红,等. 地应力分布对冲击地压影响分析与模拟研究[J]. 地下空间与工程学报,2019,15(增刊2):920-9255.

    XIE Keke,SHEN Ze,HUANG Lianhong,et al. Analysis and simulation of the impact of stress distribution law on rock burst[J]. Chinese Journal of Underground Space and Engineering,2019,15(S2):920-925.
    [7] 潘俊锋,简军峰,刘少虹,等. 黄陇侏罗纪煤田冲击地压地质特征与防治[J]. 煤矿开采,2019,24(1):110-115.

    PAN Junfeng,JIAN Junfeng,LIU Shaohong,et al. Geological characteristic and control of rock burst of Huanglong Jurassic Coal Mine Field[J]. Coal Mining Technology,2019,24(1):110-115.
    [8] 马文涛,潘俊锋,刘少虹,等. 煤层顶板深孔“钻—切—压”预裂防冲技术试验研究[J]. 工矿自动化,2020,46(1):7-12.

    MA Wentao,PAN Junfeng,LIU Shaohong,et al. Experimental research on "drilling-cutting-fracturing" pre-fracturing to prevent rock burst technology for deep hole of roof of coal seam[J]. Industry and Mine Automation,2020,46(1):7-12.
    [9] 吴宇,郝阳,浦海,等. 煤岩体变形破坏的能量演化模型及冲击危险性评价[J]. 采矿与安全工程学报,2022,39(6):1177-1186.

    WU Yu,HAO Yang,PU Hai,et al. Energy evolution model and rock burst risk assessment for deformation and failure of coal-rock mass[J]. Journal of Mining & Safety Engineering,2022,39(6):1177-1186.
    [10] 李金鑫. 动荷载作用下分层面对胶结充填体强度特性影响规律研究[D]. 昆明:昆明理工大学,2022.

    LI Jinxin. Study on the influence of stratification plane on the strength characteristics of cemented backfill under dynamic load[D]. Kunming:Kunming University of Science and Technology,2022.
    [11] YANG Zengqing,LIU Chang,JIN Huiying. Study on pressure relief zone formed inside roadway rib by rotary cutting with pressurized water jet for preventing rock burst[J]. Advances in Civil Engineering,2022. DOI: 10.1155/2022/9647029.
    [12] 窦林名,牟宗龙,陆菜平. 采矿地球物理理论与技术[M]. 北京:科学出版社,2014.

    DOU Linming,MU Zonglong,LU Caiping. Theory and technology of mining geophysics[M]. Beijing:Science Press,2014.
    [13] 刘畅,杨增强,弓培林,等. 工作面过空巷基本顶超前破断压架机理及控制技术研究[J]. 煤炭学报,2017,42(8):1932-1940.

    LIU Chang,YANG Zengqiang,GONG Peilin,et al. Mechanism and control technology of supports crushing induced by main roof 's breaking ahead of workface when crossing abandoned roadway[J]. Journal of China Coal Society,2017,42(8):1932-1940.
    [14] 刘畅,刘正和,张俊文,等. 工作面长度对覆岩空间结构演化及大采高采场矿压规律的影响[J]. 岩土力学,2018,39(2):691-698.

    LIU Chang,LIU Zhenghe,ZHANG Junwen,et al. Effect of mining face length on the evolution of spatial structure of overlying strata and the law of underground pressure in large mining height face[J]. Rock and Soil Mechanics,2018,39(2):691-698.
    [15] 钱鸣高,石平五,许家林. 矿山压力与岩层控制[M]. 徐州:中国矿业大学出版社,2010.

    QIAN Minggao,SHI Pingwu,XU Jialin. Mining pressure and strata control[M]. Xuzhou:China University of Mining and Technology Press,2010.
    [16] 王高昂,朱斯陶,姜福兴,等. 高应力厚煤层大巷孤立煤体蠕变失稳冲击机理及防治研究[J]. 岩土工程学报,2022,44(9):1689-1698,9.

    WANG Gao'ang,ZHU Sitao,JIANG Fuxing,et al. Creep instability rock burst mechanism and prevention technology of isolated coal mass in roadways of high-stress thick coal seam[J]. Chinese Journal of Geotechnical Engineering,2022,44(9):1689-1698,9.
    [17] 郭重托,李杰,柏建彪,等. 特厚煤层综放开采沿空掘巷煤柱合理宽度研究[J]. 煤炭工程,2022,54(2):19-24.

    GUO Zhongtuo,LI Jie,BAI Jianbiao,et al. Reasonable coal pillar width of gob-side entry driving in fully mechanized top-coal caving of extra-thick coal seam[J]. Coal Engineering,2022,54(2):19-24.
    [18] 梅星. 综放大断面沿空煤巷围岩稳定性及不对称支护[D]. 北京:中国矿业大学(北京),2016.

    MEI Xing. Surrounding rock stability and asymmetric support of large section gob-side entry driving in fully mechanized caving[D]. Beijing:China University of Mining and Technology-Beijing,2016.
    [19] 王猛,柏建彪,王襄禹,等. 深部倾斜煤层沿空掘巷上覆结构稳定与控制研究[J]. 采矿与安全工程学报,2015,32(3):426-432.

    WANG Meng,BAI Jianbiao,WANG Xiangyu,et al. Stability and control technology of overlying structure in gob-side entry driving roadways of deep inclined coal seam[J]. Journal of Mining & Safety Engineering,2015,32(3):426-432.
    [20] 刘洋,邱黎明,娄全,等. 岩石受载破坏过程声电信号时频特征研究[J]. 工矿自动化,2020,46(6):87-91.

    LIU Yang,QIU Liming,LOU Quan,et al. Research on time-frequency characteristics of acoustic-electric signals in process of rock failure under load[J]. Industry and Mine Automation,2020,46(6):87-91.
    [21] 姜希印,陶维国. 孤岛工作面冲击地压多指标监测及危险性区域划分[J]. 工矿自动化,2020,46(1):44-49.

    JIANG Xiyin,TAO Weiguo. Multi-index monitoring of rock burst and risk zone division of island mining coal face[J]. Industry and Mine Automation,2020,46(1):44-49.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  56
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 修回日期:  2023-10-06
  • 网络出版日期:  2023-10-26

目录

    /

    返回文章
    返回