基于人机关系的煤巷掘进作业优化

Optimization of coal roadway heading operation based on human-machine relationship

  • 摘要: 目前针对煤巷掘进效率提升的研究大多从改进掘进设备的角度出发,对煤巷掘进作业工序及人员配置的考虑较少,而保持和谐稳定的人机关系是保障煤巷掘进效率的关键。以马道头煤矿8404工作面2404进风巷为工程背景,在考虑人机匹配关系的基础上,提出了煤巷掘进作业优化方案。对掘锚机割煤支护工序进行了优化,提出了顶部和帮部锚杆空间不成排的掘进巷道支护体系,即在连续作业2个循环进尺后不退掘锚机组,使顶部锚杆领先帮部锚杆300 mm,以节约巷道支护时间。数值模拟结果表明,顶部和帮部锚杆空间不成排支护的应力场与顶部和帮部锚杆空间对齐成排支护的应力场相差不大,验证了顶部和帮部锚杆空间不成排支护体系的可靠性。通过多工序并行作业优化了煤巷掘进作业流程,进而计算各工序任务量,优化各工序相关的人员配置。工程应用结果表明,基于人机关系对煤巷掘进作业进行优化后,日循环数由10次增加到15次,月进尺由300 m增加到450 m,工人效率从0.1 m/工提升到0.14 m/工,循环周期由80 min缩减到44.6 min,明显提升了煤巷掘进效率。

     

    Abstract: Currently, research on improving the efficiency of coal roadway heading mostly focuses on improving heading equipment, with less consideration given to the working procedures and personnel allocation of coal roadway heading. Maintaining a harmonious and stable human-machine relationship is the key to ensuring the efficiency of coal roadway heading. Taking the 2404 air inlet roadway of 8404 working face in Madaotou Coal Mine as the engineering background, and considering the human-machine matching relationship, an optimization plan for coal roadway heading operation is proposed. The coal cutting support process of the anchor excavator has been optimized. A support system for the heading roadway with non-aligned top and side anchor spaces has been proposed. This means that after two consecutive cycles of footage, the anchor heading unit is not retracted. The top anchor is 300 mm ahead of the side anchor to save roadway support time. The numerical simulation results indicate that the stress field of non-aligned support with top and side anchor bolts in space is not significantly different from that of aligned support with top and side anchor bolts in space. It verifies the reliability of the non-aligned support system with top and side anchor bolts in space. The process of coal roadway heading is optimized through the multi-process parallel operation. The task volume of each process is calculated to optimize the personnel allocation related to each process. The engineering application results show that after optimizing the coal roadway heading operation based on the human-machine relationship, the daily cycle number increases from 10 to 15, the monthly footage increases from 300 m to 450 m, the worker efficiency increases from 0.1 m/worker to 0.14 m/worker, and the cycle is reduced from 80 minutes to 44.6 minutes. It significantly improves the efficiency of coal roadway heading.

     

/

返回文章
返回