基于模糊理论的局部通风机变频控制系统设计

贾天毅, 徐立军, 陈志峰, 唐佳

贾天毅,徐立军,陈志峰,等. 基于模糊理论的局部通风机变频控制系统设计[J]. 工矿自动化,2022,48(10):88-96, 106. DOI: 10.13272/j.issn.1671-251x.2022060087
引用本文: 贾天毅,徐立军,陈志峰,等. 基于模糊理论的局部通风机变频控制系统设计[J]. 工矿自动化,2022,48(10):88-96, 106. DOI: 10.13272/j.issn.1671-251x.2022060087
JIA Tianyi, XU Lijun, CHEN Zhifeng, et al. Design of variable frequency control system for local ventilator based on fuzzy theory[J]. Journal of Mine Automation,2022,48(10):88-96, 106. DOI: 10.13272/j.issn.1671-251x.2022060087
Citation: JIA Tianyi, XU Lijun, CHEN Zhifeng, et al. Design of variable frequency control system for local ventilator based on fuzzy theory[J]. Journal of Mine Automation,2022,48(10):88-96, 106. DOI: 10.13272/j.issn.1671-251x.2022060087

基于模糊理论的局部通风机变频控制系统设计

基金项目: 国家自然科学基金地区科学基金项目(52064046);新疆维吾尔自治区高校科研计划项目(XJEDU2019I026);新疆维吾尔自治区科技厅科技支疆项目(2020E0258)。
详细信息
    作者简介:

    贾天毅(1997—),男,甘肃张掖人,硕士研究生,主要研究方向为煤矿自动化,E-mail:1539598695@qq.com

    通讯作者:

    徐立军(1978—),男,新疆乌鲁木齐人,教授,博士研究生导师,主要研究方向为煤矿机电智能化技术、氢能技术及其应用,E-mail:xulijun612@163.com

  • 中图分类号: TD635

Design of variable frequency control system for local ventilator based on fuzzy theory

  • 摘要: 现有局部通风机变频控制方法缺少对瓦斯突变量的预判,当大量瓦斯异常涌出时,调节存在一定滞后性,易导致瓦斯积聚。针对该问题,设计了基于模糊理论的局部通风机变频控制系统。采用瓦斯模糊控制器和风量模糊控制器实现模糊控制,对2个模糊控制器输出的控制量进行比较,根据较大值确定通风机变频情况,当两者相等时以瓦斯模糊控制为主。采用基于瓦斯涌出量的等级划分方法,以最远工况点对应风量为辅助,将通风机频率划分为4个等级。将掘进工作面瓦斯体积分数达到0.8%设置为升频条件,将瓦斯体积分数不大于0.6%或0.5%设置为降频条件,同时设定通风机降频后的供风量为达到降频条件时将回风流瓦斯体积分数控制在0.7%或0.6%所需的供风量。当大量瓦斯异常涌出时,通风机升频以降低瓦斯浓度,同时,通风机供风量可满足更大的瓦斯排放需求,为调整提供一定缓冲,克服变频控制滞后的缺点。试验结果表明:降频条件中瓦斯体积分数为0.5%,降频后供风量为达到降频条件时将回风流瓦斯体积分数控制在0.6%所需供风量,该条件下控制效果较好,但I级供风量略小于最远掘进距离处所需的最小供风量,可新设一个介于I级和II级之间的频率等级I*级,通过提高通风机频率来增加供风量,满足最远掘进距离处最小风量需求。
    Abstract: The existing variable frequency control method for local ventilator lacks prediction of gas outburst variable. When a large amount of gas emission abnormally, there is a certain lag in regulation, which is easy to lead to gas accumulation. To solve this problem, a variable frequency control system for local ventilator based on fuzzy theory is designed. Fuzzy control is realized by using gas fuzzy controller and air volume fuzzy controller. The control quantity output by two fuzzy controllers is compared. The frequency conversion situation of ventilator is determined according to the larger value. When the two are equal, the fuzzy control of gas is dominant. The classification method based on gas emission is adopted. With the air volume corresponding to the farthest working point as the auxiliary, the ventilator frequency is divided into 4 levels. The gas volume fraction of the heading working face reaching 0.8% is set as the frequency-increasing condition. The gas volume fraction not more than 0.6% or 0.5% is set as the frequency-reducing condition. Moreover, the air supply quantity of the ventilator after frequency reduction is set as the air supply volume required to control the gas volume fraction of return airflow at 0.7% or 0.6% when the frequency reduction condition is achieved. When a large amount of abnormal gas emission, the ventilator is increased in frequency to reduce the gas concentration. At the same time, the air supply volume of the ventilator can meet the greater gas discharge demand. The ventilator can provide a certain buffer for adjustment, and overcome the shortcomings of frequency conversion control lag. The test results show that the gas volume fraction is 0.5% under the condition of frequency reduction. The air supply volume after frequency reduction is the air supply volume required to control the gas volume fraction of return air at 0.6% when the frequency reduction condition is achieved. The control effect is good under this condition. But the air supply volume of level I is slightly less than the minimum air supply volume required at the farthest heading distance. The new frequency level I* between level I and level II can be set. The air supply volume can be increased by increasing the frequency of the ventilator to meet the minimum air supply volume requirement at the farthest heading distance.
  • 图  1   局部通风机及传感器布置

    Figure  1.   Layout of local ventilator and sensor

    图  2   通风机H−Q特性曲线

    Figure  2.   H-Q characteristic curve of ventilator

    图  3   局部通风机变频控制系统原理

    Figure  3.   Principle of frequency conversion control system of local ventilator

    图  4   局部通风机变频控制系统控制流程

    Figure  4.   Control flow of frequency conversion control system of local ventilator

    图  5   局部通风机变频控制系统硬件结构

    Figure  5.   Hardware structure of frequency conversion control system of local ventilator

    图  6   嵌入式风冷变频器结构

    1—变压器模块;2—接触器;3—接线板;4—防爆钢制外壳;5—开关电源模块;6—电容器模块;7—变频器控制模块;8—散热片模块。

    Figure  6.   Structure of embedded air-cooled frequency converter

    图  7   嵌入式风冷变频器安装位置

    Figure  7.   Installation position of embedded air-cooled frequency converter

    图  8   偏差$e'_1 $的隶属函数

    Figure  8.   Membership function of deviation $e'_1 $

    图  9   偏差变化率$e_{{\rm{c}}1}' $的隶属函数

    Figure  9.   Membership function of deviation change rate of $e_{{\rm{c}}1}' $

    图  10   输出量U1的隶属函数

    Figure  10.   Membership function of output quantity U1

    图  11   输出量曲面

    Figure  11.   Output surface

    图  12   局部通风机工况点

    Figure  12.   Working point of local ventilator

    图  13   不同降频条件及供风量所对应的试验数据

    Figure  13.   Test data corresponding to different frequency reduction conditions and air supply volume

    表  1   瓦斯浓度模糊控制规则

    Table  1   Fuzzy control rule for gas concentration

    $e_1' $$e_{{\rm{c}}1}' $
    NBNSZOPSPB
    NBAABBC
    NMBBBCC
    NSBCCCD
    ZOCCDDD
    PSCDDDE
    PMDDEEE
    PBDEEEE
    下载: 导出CSV

    表  2   试验设备及仪器

    Table  2   The equipments and instruments used in the test

    名称规格型号
    对旋轴流局部通风机FBDNo_5.0/2×7.5
    变频器BPJ−75/690SF
    低浓度瓦斯传感器GJC4
    风量传感器KGF2
    无纸记录仪MIK−R5000C
    下载: 导出CSV

    表  3   达到第1种降频条件时控制c2=0.7%所需的供风量

    Table  3   The air supply required to control c2=0.7% when the first frequency reduction condition is achieved

    频率等级供风量/
    (m3·min−1)
    Qh/
    (m3·min−1)
    c1/%Wg/
    (m3·min−1)
    $Q_1' $/
    (m3·min−1)
    IV255.0212.50.81.70
    0.61.28219.5
    III219.5182.90.81.46
    0.61.10188.5
    II188.5157.10.81.26
    0.60.94161.2
    I161.2134.30.81.07
    0.60.81
    下载: 导出CSV

    表  4   第1种降频条件下控制量范围

    Table  4   The range of control quantity under the first frequency reduction condition

    频率变化控制量U1控制量U 2
    升频U1≥60U 2<20
    频率不变40<U 1<6020≤U 2≤60
    降频U 1≤40U 2>60
    下载: 导出CSV

    表  5   达到第2种降频条件时控制c2=0.7%所需的供风量

    Table  5   The air supply required to control c2=0.7% when the second frequency reduction condition is achieved

    频率等级供风量/
    (m3·min−1)
    Qh/
    (m3·min−1)
    c1/%Wg/
    (m3·min−1)
    $Q_2' $/
    (m3·min−1)
    IV255.0212.50.81.70
    0.51.06181.7
    III181.7151.40.81.21
    0.50.76130.3
    II130.3108.60.80.87
    0.50.5492.5
    I92.577.10.80.62
    0.50.39
    下载: 导出CSV

    表  6   达到第2种降频条件时控制c2=0.6%所需的供风量

    Table  6   The air supply required to control c2=0.6% when the second frequency reduction condition is achieved

    频率等级供风量/
    (m3·min−1)
    Qh/
    (m3·min−1)
    c1/%Wg/
    (m3·min−1)
    $Q_3' $/
    (m3·min−1)
    IV255.0212.50.81.70
    0.51.06212.0
    III212.0176.70.81.41
    0.50.88176.0
    II176.0146.70.81.17
    0.50.73146.0
    I146.0121.70.80.97
    0.50.61
    下载: 导出CSV

    表  7   第2种降频条件下控制量范围

    Table  7   The range of control quantity under the second frequency reduction condition

    频率变化控制量U1控制量U 2
    升频U1≥60U2<20
    频率不变30<U1<6020≤U2≤60
    降频U1≤30U2>60
    下载: 导出CSV
  • [1] 杨杰,赵连刚,全芳. 煤矿通风系统现状及智能通风系统设计[J]. 工矿自动化,2015,41(11):74-77. DOI: 10.13272/j.issn.1671-251x.2015.11.018

    YANG Jie,ZHAO Liangang,QUAN Fang. Current situation of coal mine ventilation system and design of intelligent ventilation system[J]. Industry and Mine Automation,2015,41(11):74-77. DOI: 10.13272/j.issn.1671-251x.2015.11.018

    [2] 周福宝,魏连江,夏同强,等. 矿井智能通风原理、关键技术及其初步实现[J]. 煤炭学报,2020,45(6):2225-2235.

    ZHOU Fubao,WEI Lianjiang,XIA Tongqiang,et al. Principle,key technology and preliminary realization of mine intelligent ventilation[J]. Journal of China Coal Society,2020,45(6):2225-2235.

    [3] 吴新忠,张芝超,许嘉琳,等. 矿井智能风量调节研究[J]. 工矿自动化,2021,47(4):44-50. DOI: 10.13272/j.issn.1671-251x.17693

    WU Xinzhong,ZHANG Zhichao,XU Jialin,et al. Research on intelligent air volume regulation in mines[J]. Industry and Mine Automation,2021,47(4):44-50. DOI: 10.13272/j.issn.1671-251x.17693

    [4] 景国勋,刘孟霞. 2015—2019年我国煤矿瓦斯事故统计与规律分析[J]. 安全与环境学报,2022,22(3):1680-1686. DOI: 10.13637/j.issn.1009-6094.2021.0092

    JING Guoxun,LIU Mengxia. Statistics and analysis of coal mine gas accidents in China from 2015 to 2019[J]. Journal of Safety and Environment,2022,22(3):1680-1686. DOI: 10.13637/j.issn.1009-6094.2021.0092

    [5]

    BI Qiuping,LI Yucheng,SHEN Cheng. Screening of evaluation index and construction of evaluation index system for mine ventilation system[J]. Sustainability,2021,13(21):1-15.

    [6] 尹智伟. 煤矿通风系统稳定性分析[J]. 中国石油和化工标准与质量,2019,39(2):163-164. DOI: 10.3969/j.issn.1673-4076.2019.02.080

    YIN Zhiwei. Stability analysis of coal mine ventilation system[J]. China Petroleum and Chemical Standard and Quality,2019,39(2):163-164. DOI: 10.3969/j.issn.1673-4076.2019.02.080

    [7] 尹伊君,尹丽娜. 变频技术和模糊控制在矿井局部通风机中的应用[J]. 煤矿机械,2007,28(1):139-141. DOI: 10.3969/j.issn.1003-0794.2007.01.061

    YIN Yijun,YIN Lina. Frequency-variable technology and fuzzy control used in mine local ventilator[J]. Coal Mine Machinery,2007,28(1):139-141. DOI: 10.3969/j.issn.1003-0794.2007.01.061

    [8] 张燕峰. 矿井主节能通风系统的配置及其功能的实现[J]. 机械管理开发,2020,35(11):237-238,271.

    ZHANG Yanfeng. Configuration and function realization of main energy-saving ventilation system in mine[J]. Mechanical Management and Development,2020,35(11):237-238,271.

    [9]

    BABU V R,MAITY T,PRASAD H. Energy saving techniques for ventilation ventilators used in underground coal mines:a survey[J]. Journal of Mining Science,2015,51(5):1001-1008. DOI: 10.1134/S1062739115050198

    [10]

    MALEKI S,SOTOUDEH F,SERESHKI F. Application of VENTSIM 3D and mathematical programming to optimize underground mine ventilation network:a case study[J]. Journal of Mining and Environment,2018,9(3):741-752.

    [11] 常新明,陈国栋,李相,等. 矿井局部通风机变频控制系统的设计研究[J]. 能源与环保,2021,43(5):227-232.

    CHANG Xinming,CHEN Guodong,LI Xiang,et al. Research on design of frequency conversion control system of mine local fan[J]. China Energy and Environmental Protection,2021,43(5):227-232.

    [12] 张兴兵. 矿井通风在矿井安全生产中的重要性[J]. 能源与节能,2022(1):159-160. DOI: 10.3969/j.issn.2095-0802.2022.01.059

    ZHANG Xingbing. Importance of mine ventilation in mine safety production[J]. Energy and Energy Conservation,2022(1):159-160. DOI: 10.3969/j.issn.2095-0802.2022.01.059

    [13] 郝文科. 变频调速技术在煤矿通风机节能的应用研究[J]. 煤炭与化工,2017,40(9):141-142,145.

    HAO Wenke. Application research of frequency conversion technology in energy saving of mine fan[J]. Coal and Chemical Industry,2017,40(9):141-142,145.

    [14] 谭晓峰. 变频技术在煤矿节能中的应用探讨[J]. 中国设备工程,2021(4):194-196. DOI: 10.3969/j.issn.1671-0711.2021.04.122

    TAN Xiaofeng. Discussion on application of frequency conversion technology in coal mine energy saving[J]. China Plant Engineering,2021(4):194-196. DOI: 10.3969/j.issn.1671-0711.2021.04.122

    [15] 刘丹. 基于PLC的矿井通风机变频调速系统设计[J]. 煤矿机械,2020,41(3):181-183. DOI: 10.13436/j.mkjx.202003059

    LIU Dan. Design of mine ventilator variable frequency speed regulation system based on PLC[J]. Coal Mine Machinery,2020,41(3):181-183. DOI: 10.13436/j.mkjx.202003059

    [16]

    ZHANG Hongkui, ZHANG Qiulin, ZHE Wang, et al. Design of control and frequency conversion speed regulation system for mine fan[C]. The 2020 International Conference on Advanced Materials and Intelligent Manufacturing & Advanced Steel for Automotive Seminar, Guilin, 2020.

    [17] 朱培祥,龚柏宇,李海,等. 应用模糊控制的煤矿通风机节能控制装置研制[J]. 自动化仪表,2020,41(8):87-90.

    ZHU Peixiang,GONG Boyu,LI Hai,et al. Development of energy saving control device for coal mine ventilator with fuzzy control[J]. Process Automation Instrumentation,2020,41(8):87-90.

    [18] 陈志峰,郭珊珊,徐立军,等. 煤矿局部通风机瓦斯浓度自动调节及节能控制研究[J]. 电气自动化,2021,43(1):23-25. DOI: 10.3969/j.issn.1000-3886.2021.01.007

    CHEN Zhifeng,GUO Shanshan,XU Lijun,et al. Research on gas concentration automatic regulation and energy saving control of local ventilators in coal mines[J]. Electrical Automation,2021,43(1):23-25. DOI: 10.3969/j.issn.1000-3886.2021.01.007

    [19] 王勇. 矿井局部通风机变频控制方法的探讨[J]. 硅谷,2014,7(14):49-50.

    WANG Yong. Discussion on frequency conversion control method of mine local ventilator[J]. Silicon Valley,2014,7(14):49-50.

    [20] 杜岗,马小平,张萍. 煤矿局部通风机转速控制算法研究[J]. 工矿自动化,2020,46(9):69-73,87.

    DU Gang,MA Xiaoping,ZHANG Ping. Research on speed control algorithm of coal mine local ventilator[J]. Industry and Mine Automation,2020,46(9):69-73,87.

    [21] 任志玲,林冬,夏博文,等. 基于GASA−SVR的矿井瓦斯涌出量预测研究[J]. 传感技术学报,2017,30(2):247-252. DOI: 10.3969/j.issn.1004-1699.2017.02.014

    REN Zhiling,LIN Dong,XIA Bowen,et al. Research on prediction of mine gas emission quantity based on GASA-SVR[J]. Chinese Journal of Sensors and Actuators,2017,30(2):247-252. DOI: 10.3969/j.issn.1004-1699.2017.02.014

  • 期刊类型引用(14)

    1. 曹现刚,段雍,王国法,赵江滨,任怀伟,赵福媛,杨鑫,张鑫媛,樊红卫,薛旭升,李曼. 煤矿设备全寿命周期健康管理与智能维护研究综述. 煤炭学报. 2025(01): 694-714 . 百度学术
    2. 曹建文. 分布式电牵引采煤机健康状态监控系统设计. 煤矿机械. 2023(03): 213-216 . 百度学术
    3. 赵海发,张成华. 基于LS-DYNA的采煤机滚筒多参数优化设计. 制造业自动化. 2023(03): 144-147 . 百度学术
    4. 钱江泳. 采煤机实时健康状态与健康度指示系统开发. 煤矿机电. 2023(02): 22-26 . 百度学术
    5. 曹现刚,段雍,赵江滨,杨鑫,赵福媛,樊红卫. 综采设备健康状态评估研究综述. 工矿自动化. 2023(09): 23-35+97 . 本站查看
    6. 曹现刚,许欣,雷卓,李彦川. 基于降噪自编码器与改进卷积神经网络的采煤机健康状态识别. 信息与控制. 2022(01): 98-106 . 百度学术
    7. 林江. 电牵引采煤机健康度智能评价系统和方法. 煤矿机械. 2022(07): 146-148 . 百度学术
    8. 胡金成. 主动半监督RVFLN方法在重介质选煤过程的应用. 中国矿业大学学报. 2022(06): 1232-1240 . 百度学术
    9. 严周民,艾志亮,宋学伟. 基于迁移学习的采煤机摇臂传动故障研究. 能源与环保. 2021(05): 196-201 . 百度学术
    10. 张俭让,刘睿卿,李学文,王智鹏,史振东. 采煤机运行状态数据分布式实时预测模型. 工矿自动化. 2021(07): 21-28 . 本站查看
    11. 包从望,江伟,刘永志,车守全. 基于卷积神经网络的采煤机截割部减速器故障诊断研究. 机电工程. 2021(10): 1317-1323+1331 . 百度学术
    12. 马忠昌. 采煤机检修电动机常见故障分析. 中国新技术新产品. 2020(16): 39-40 . 百度学术
    13. 马宏伟,聂珍,王川伟,薛旭升,夏晶. 煤矿机器人关键共性技术与发展策略. 智能矿山. 2020(01): 63-70 . 百度学术
    14. 曹现刚,马宏伟,段雍,徐田波,王岩,李鹏飞. 煤矿设备智能维护与健康管理技术研究现状与展望. 智能矿山. 2020(01): 105-111 . 百度学术

    其他类型引用(6)

图(13)  /  表(7)
计量
  • 文章访问数:  206
  • HTML全文浏览量:  25
  • PDF下载量:  40
  • 被引次数: 20
出版历程
  • 收稿日期:  2022-06-21
  • 修回日期:  2022-09-25
  • 网络出版日期:  2022-08-29
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回