矿用电磁先导阀换向特性低功耗测试平台设计

李俊士

李俊士. 矿用电磁先导阀换向特性低功耗测试平台设计[J]. 工矿自动化,2022,48(12):158-163. DOI: 10.13272/j.issn.1671-251x.2022060072
引用本文: 李俊士. 矿用电磁先导阀换向特性低功耗测试平台设计[J]. 工矿自动化,2022,48(12):158-163. DOI: 10.13272/j.issn.1671-251x.2022060072
LI Junshi. Design of low-power test platform for reversing characteristics of mine solenoid pilot valve[J]. Journal of Mine Automation,2022,48(12):158-163. DOI: 10.13272/j.issn.1671-251x.2022060072
Citation: LI Junshi. Design of low-power test platform for reversing characteristics of mine solenoid pilot valve[J]. Journal of Mine Automation,2022,48(12):158-163. DOI: 10.13272/j.issn.1671-251x.2022060072

矿用电磁先导阀换向特性低功耗测试平台设计

基金项目: 天地科技股份有限公司科技创新创业资金专项资助项目(2021-TD-ZD007);山东省重点研发计划项目(2020CXGC01150102);北京天玛智控科技股份有限公司科技项目(2021TM001-J1)。
详细信息
    作者简介:

    李俊士(1982—),男,山西运城人,副研究员,硕士,现主要从事综采工作面自动化控制系统与测试技术方面的研究工作,E-mail:lijs@tdmarco.com

  • 中图分类号: TD687

Design of low-power test platform for reversing characteristics of mine solenoid pilot valve

  • 摘要: 电磁先导阀是综采工作面实现无人化开采的核心元部件之一,目前矿用电磁先导阀测试方法多采用乳化液泵作为液源,功耗较大,此外,系统压力调节多采用手动调节方式,效率低。针对上述问题,设计了一种矿用电磁先导阀换向特性低功耗测试平台。该平台包括液压系统和测控系统2个部分。液压系统主要包括电气比例阀、气液增压泵、被试阀、蓄能器等部件,采用双头气液增压泵作为液源,以降低能耗;采用电气比例阀调节气液增压泵入口气压,将被试阀入口压力调节至所需值,实现系统压力自动调节。测控系统包括上位机、采集卡、程控电源、电气比例阀控制器(PID控制器)、多种传感器等,根据传感器安装和精度要求,选用激光位移传感器测试电磁铁顶杆位移,并采用PID控制器调节电磁先导阀进液口的压力。该平台可实现电磁先导阀换向过程中各项性能指标的实时动态监测和数据存储,包括电压、电流、进出口压力、顶杆位移、动态响应时间和实时功耗等,最大功率仅为800 W,提升了测试安全性和效率,大幅度降低了系统能耗,为研究人员提供了高效、可靠的测试和验证手段。
    Abstract: The electromagnetic pilot valve is one of the core components for realizing unmanned mining in the fully mechanized working face. The current mine electromagnetic pilot valve test methods use emulsion pump as a liquid source. The power consumption is large. In addition, the system pressure regulation uses manual adjustment, which is inefficient. In order to solve the above problems, a low-power test platform for reversing characteristics of mine electromagnetic pilot valve is designed. The platform consists of two parts: hydraulic system and measurement and control system. The hydraulic system mainly includes electric proportional valve, gas-liquid booster pump, valve to be tested, and accumulator. The double-headed gas-liquid booster pump is used as the liquid source so as to reduce energy consumption. The electric proportional valve is used to adjust the inlet air pressure of the gas-liquid booster pump. The inlet pressure of the tested valve is adjusted to the required value to realize the automatic regulation of the system pressure. The measurement and control system consists of upper computer, acquisition card, program control power supply, electric proportional valve controller (PID controller), and various sensors. According to the requirements of sensor installation and precision, the laser displacement sensor is selected to test the displacement of the electromagnet ejector rod. The PID controller is used to adjust the pressure of the liquid inlet of the electromagnetic pilot valve. The platform can realize the real-time dynamic monitoring and data storage of various performance indexes of the electromagnetic pilot valve in the reversing process. The indexes include voltage, current, inlet and outlet pressure, ejector rod displacement, dynamic response time and real-time power consumption, etc. The maximum power is only 800 W, which improves the test safety and efficiency, greatly reduces the system energy consumption, and provides an efficient and reliable test and verification means for researchers.
  • 图  1   矿用电磁先导阀及其阀芯结构

    Figure  1.   Structure of mine solenoid pilot valve and its valve core

    图  2   换向过程中各参数变化时序

    Figure  2.   Time sequence of each parameter in the process of reversing

    图  3   矿用电磁先导阀换向特性低功耗测试平台结构

    1—气源;2—电气比例阀;3—双头气液增压泵;4—蓄能器;5—安全阀;6—被试阀;7—进口压力传感器;8—出口压力传感器;9—位移传感器;10—电流传感器;11—电压传感器;12—电控开关阀。

    Figure  3.   Structure of reversing characteristic test platform with low-power consumption for mine solenoid pilot valve

    图  4   双头气液增压泵

    1—双头气液增压泵;2—单向阀;3—增压缸;4—二位四通气控滑阀;5—消声器;6—二位二通导阀;7—电气比例阀;8—气源。

    Figure  4.   Double-headed gas liquid boost pump

    图  5   电磁铁顶杆位移测试方法

    Figure  5.   Test method for displacement of electromagnete ejector rod

    图  6   电磁先导阀进液口压力控制流程

    Figure  6.   Control flow of inlet pressure of solenoid pilot valve

    图  7   测试平台自动控制流程

    Figure  7.   Automatic control process of test platform

    图  8   矿用电磁先导阀换向特性低功耗测试平台

    Figure  8.   Low-power consumption test platform for reversing characteristic of mine solenoid pilot valve

    图  9   电磁先导阀换向特性测试曲线

    Figure  9.   Reversing characteristic test curves of solenoid pilot valve

    图  10   电磁先导阀特性局部放大测试曲线

    Figure  10.   Partial amplification test curves of solenoid pilot valve characteristics

  • [1] 张良. 液压支架电液控制系统的应用现状及发展趋势[J]. 煤炭科学技术,2003,31(2):5-8. DOI: 10.3969/j.issn.0253-2336.2003.02.002

    ZHANG Liang. Application status and development tendency of electric and hydraulic control system for hydraulic powered support[J]. Coal Science and Technology,2003,31(2):5-8. DOI: 10.3969/j.issn.0253-2336.2003.02.002

    [2] 孙艳玲,王永良,金光耀. 电磁先导阀动态特性仿真与分析[J]. 流体传动与控制,2011(2):21-24. DOI: 10.3969/j.issn.1672-8904.2011.02.006

    SUN Yanling,WANG Yongliang,JIN Guangyao. Simulation and analysis on the dynamic characteristics of solenoid pilot valve[J]. Fluid Power Transmission & Control,2011(2):21-24. DOI: 10.3969/j.issn.1672-8904.2011.02.006

    [3] 杨卫书. 矿用电磁先导阀测试试验台的开发与研究[J]. 液压与气动,2011,35(1):75-77. DOI: 10.3969/j.issn.1000-4858.2011.01.031

    YANG Weishu. Study on test-bed of electromagnetic pilot valve for mine use[J]. Chinese Hydraulics & Pneumatics,2011,35(1):75-77. DOI: 10.3969/j.issn.1000-4858.2011.01.031

    [4] 翟京. 小流量电磁先导阀综合性能试验装置设计[J]. 工矿自动化,2014,40(8):104-106. DOI: 10.13272/j.issn.1671-251x.2014.08.028

    ZHAI Jing. Design of test device of comprehensive performance of electromagnetic pilot valve with small flow[J]. Industry and Mine Automation,2014,40(8):104-106. DOI: 10.13272/j.issn.1671-251x.2014.08.028

    [5] 赵锐. 微小流量电磁先导阀性能测试液压控制系统设计[J]. 煤矿机械,2015,36(5):11-12. DOI: 10.13436/j.mkjx.201505005

    ZHAO Rui. Design of hydraulic control system for small flow electromagnetic pilot valve test[J]. Coal Mine Machinery,2015,36(5):11-12. DOI: 10.13436/j.mkjx.201505005

    [6] 张斌,钟麒,杨华勇. 高速开关阀控制策略研究[J]. 液压与气动,2017,41(6):7-11. DOI: 10.11832/j.issn.1000-4858.2017.06.002

    ZHANG Bin,ZHONG Qi,YANG Huayong. Control strategy of high speed on/off valve[J]. Chinese Hydraulics & Pneumatics,2017,41(6):7-11. DOI: 10.11832/j.issn.1000-4858.2017.06.002

    [7] 孙晓,栾盈盈,孙柯,等. 高速双线圈开关电磁阀控制策略研究[J]. 液压与气动,2020,44(2):175-182. DOI: 10.11832/j.issn.1000-4858.2020.02.027

    SUN Xiao,LUAN Yingying,SUN Ke,et al. Control strategy of high-speed on/off solenoid valve with double windings[J]. Chinese Hydraulics & Pneumatics,2020,44(2):175-182. DOI: 10.11832/j.issn.1000-4858.2020.02.027

    [8] 董建麟,廖瑶瑶,袁红兵,等. 矿用电磁先导阀驱动策略[J]. 液压与气动,2021,45(9):31-37. DOI: 10.11832/j.issn.1000-4858.2021.09.004

    DONG Jianlin,LIAO Yaoyao,YUAN Hongbing,et al. Driving strategy of mine-used solenoid pilot valve[J]. Chinese Hydraulics & Pneumatics,2021,45(9):31-37. DOI: 10.11832/j.issn.1000-4858.2021.09.004

    [9] 柴玮锋,廖瑶瑶,廉自生,等. 矿用电磁阀动静态特性分析[J]. 液压与气动,2020,44(8):42-48. DOI: 10.11832/j.issn.1000-4858.2020.08.007

    CHAI Weifeng,LIAO Yaoyao,LIAN Zisheng,et al. Analysis of dynamic and static characteristics of mine-used electromagnetic valve[J]. Chinese Hydraulics & Pneumatics,2020,44(8):42-48. DOI: 10.11832/j.issn.1000-4858.2020.08.007

    [10] 蒋佑华,曹建波,胡小雄. 一种直流电磁铁响应时间的测试方法[J]. 液压气动与密封,2017,37(10):52-53. DOI: 10.3969/j.issn.1008-0813.2017.10.017

    JIANG Youhua,CAO Jianbo,HU Xiaoxiong. A test method of response time for DC electromagnet[J]. Hydraulics Pneumatics & Seals,2017,37(10):52-53. DOI: 10.3969/j.issn.1008-0813.2017.10.017

    [11] 苏明,陈伦军. 基于AMESim的电磁高速开关阀动静态特性研究[J]. 液压与气动,2010,34(2):68-72. DOI: 10.3969/j.issn.1000-4858.2010.02.029

    SU Ming,CHEN Lunjun. Dynamic characteristic research of high speed on-off solenoid valve based on AMESim[J]. Chinese Hydraulics & Pneumatics,2010,34(2):68-72. DOI: 10.3969/j.issn.1000-4858.2010.02.029

    [12] 北京天玛智控科技股份有限公司. 电磁先导阀测试系统和顶杆推力测试方法: 202110815304.3[P]. 2021-07-19.

    Beijing Tianma Intelligent Control Technology Co., Ltd. Testing system of solenoid pilot valve and testing method of ejector force: 202110815304.3[P]. 2021-07-19.

    [13] 北京煤科天玛自动化科技有限公司, 北京天玛智控科技股份有限公司. 电磁先导阀测试系统和换向特性测试方法: 202110815294.3[P]. 2021-07-19.

    Beijing Coal Tech Tianma Automation Technology Co., Ltd., Beijing Tianma Intelligent Control Technology Co., Ltd. Testing system of solenoid pilot valve and testing method of reversing characteristic: 202110815294.3[P]. 2021-07-19.

    [14] 周涛. 一种应用气−液增压泵的高压试验系统设计[J]. 液压气动与密封,2020,40(8):16-18. DOI: 10.3969/j.issn.1008-0813.2020.08.004

    ZHOU Tao. Design of a high pressure test system with gas-liquid booster pump[J]. Hydraulics Pneumatics & Seals,2020,40(8):16-18. DOI: 10.3969/j.issn.1008-0813.2020.08.004

  • 期刊类型引用(0)

    其他类型引用(2)

图(10)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  43
  • PDF下载量:  28
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-06-19
  • 修回日期:  2022-12-09
  • 网络出版日期:  2022-08-29
  • 刊出日期:  2022-12-26

目录

    /

    返回文章
    返回