煤矿井下水处理装置智能控制系统设计

赵康康, 刘波

赵康康,刘波. 煤矿井下水处理装置智能控制系统设计[J]. 工矿自动化,2022,48(12):151-157. DOI: 10.13272/j.issn.1671-251x.2022050056
引用本文: 赵康康,刘波. 煤矿井下水处理装置智能控制系统设计[J]. 工矿自动化,2022,48(12):151-157. DOI: 10.13272/j.issn.1671-251x.2022050056
ZHAO Kangkang, LIU Bo. Intelligent control system design for water treatment device in coal mine[J]. Journal of Mine Automation,2022,48(12):151-157. DOI: 10.13272/j.issn.1671-251x.2022050056
Citation: ZHAO Kangkang, LIU Bo. Intelligent control system design for water treatment device in coal mine[J]. Journal of Mine Automation,2022,48(12):151-157. DOI: 10.13272/j.issn.1671-251x.2022050056

煤矿井下水处理装置智能控制系统设计

基金项目: 中国煤炭科工集团重点项目(2020-TD-ZD015)。
详细信息
    作者简介:

    赵康康(1988—),男,河北沧州人,助理研究员,硕士,研究方向为机电控制,E-mail:zhao_kangkang@126.com

  • 中图分类号: TD67

Intelligent control system design for water treatment device in coal mine

  • 摘要: 煤矿综采工作面乳化液配制用水水处理装置多采用手动或液控方式进行制水与滤芯清洗,无法实时监测产水数据和装置工作状态,自动化程度低,操作复杂,维护工作量大。通过分析煤矿井下水处理装置智能控制需求,设计了双控制器热冗余方案,即采用2台控制器分别实现水处理装置制水和自动清洗功能。基于该方案设计了煤矿井下水处理装置智能控制系统:以KXH12B型矿用本安型控制器为核心控制单元,采集水箱液位传感器、压力传感器、流量传感器、电导率仪等监测的数据,实时监测水处理装置运行状态;2台控制器以主从模式分工协作,主从控制器分别实现自动制水、自动清洗等控制功能,且在主控制器发生故障时,其制水功能可自动切换至从控制器,保障了煤矿井下乳化液配制用水不受影响。搭建测试平台进行系统测试,结果表明该系统实现了自动制水、自动清洗、数据监测等控制功能及主从控制器热切换功能。该系统已应用于煤矿现场水处理装置,运行稳定可靠,实现了煤矿井下制水设备无人值守。
    Abstract: The water treatment device for emulsion preparation in fully mechanized mining face mostly adopts manual or hydraulic control mode for water preparation and filter element cleaning. It is unable to monitor water production data and device working status in real-time. It has low degree of automation, complex operation and heavy maintenance workload. By analyzing intelligent control requirements of the water treatment device in underground coal mine, a thermal redundancy scheme of double controllers is designed. The scheme has two controllers that are used to realize the water preparation and automatic cleaning functions of the water treatment device respectively. Based on the scheme, an intelligent control system for water treatment device in underground coal mine is designed. The KXH12B mine-used intrinsically safe controller is used as the core control unit to collect the data of water tank level sensor, pressure sensor, flow sensor and conductivity meter. The water treatment device operation status is monitored in real-time. The two controllers work in a master-slave mode. The master-slave controllers realize control functions of automatic water preparation and automatic cleaning respectively. When the main controller fails, its water preparation function can be automatically switched to the slave controller. This ensures that the water for emulsion preparation in coal mine is not affected. The test platform is built to test the system, and the results show that the system realizes control functions of automatic water preparation, automatic cleaning and data monitoring. The system also realizes the hot-switching function of master and slave controllers. The system has been applied to the water treatment device in a coal mine. It runs stably and reliably, and realizes unattended operation of the water treatment device in coal mine.
  • 图  1   井下水处理装置工艺流程

    Figure  1.   Technological process of underground water treatment device

    图  2   水处理装置智能控制系统功能需求架构

    Figure  2.   Structure of intelligent control system function requirement for water treatment device

    图  3   水处理装置智能控制系统总体方案

    Figure  3.   The total scheme of intelligent control system of water treatment device

    图  4   KXH12B型控制器实物

    Figure  4.   Material object of KXH12B controller

    图  5   KXH12B型控制器背部接口

    Figure  5.   Back interfaces of KXH12B controller

    图  6   水处理装置智能控制系统硬件结构

    Figure  6.   Hardware structure of intelligent control system of water treatment device

    图  7   水处理装置智能控制系统软件设计方案

    Figure  7.   Software design scheme of intelligent control system of water treatment device

    图  8   自动制水程序流程

    Figure  8.   Automatic water production flow

    图  9   自动清洗程序流程

    Figure  9.   Automatic washing flow

    图  10   主从控制器热切换程序流程

    Figure  10.   Hot-switching flow between main controller and the slave one

    图  11   系统测试平台(局部)

    Figure  11.   Partial system test platform

    图  12   主从控制器热切换测试

    Figure  12.   Hot-switching test between main controller and the slave one

    图  13   新巨龙煤矿井下水处理装置智能控制系统

    Figure  13.   Intelligent control system of water treatment device in Xinjulong Coal Mine

  • [1] 席波,王诗翱,郭建伟. 矿用乳化液浓度在线检测系统设计[J]. 工矿自动化,2020,46(9):98-103. DOI: 10.13272/j.issn.1671-251x.2020040023

    XI Bo,WANG Shi'ao,GUO Jianwei. Design of on-line detection system of mine emulsion concentration[J]. Industry and Mine Automation,2020,46(9):98-103. DOI: 10.13272/j.issn.1671-251x.2020040023

    [2] 向虎,张晶晶. 综采工作面乳化液配比用水深度处理技术探讨[J]. 煤矿机械,2013,34(5):252-254. DOI: 10.13436/j.mkjx.2013.05.057

    XIANG Hu,ZHANG Jingjing. Technical discussion about water depth treatment based on emulsion preparation in fully mechanized coal mining face[J]. Coal Mine Machinery,2013,34(5):252-254. DOI: 10.13436/j.mkjx.2013.05.057

    [3] 陈伟,王存飞,边燕. 超大采高综采工作面乳化液泵站系统[J]. 工矿自动化,2021,47(4):6-12. DOI: 10.13272/j.issn.1671-251x.2020120020

    CHEN Wei,WANG Cunfei,BIAN Yan. Emulsion pump station system for super high fully mechanized working face[J]. Industry and Mine Automation,2021,47(4):6-12. DOI: 10.13272/j.issn.1671-251x.2020120020

    [4] 李亚军,佟国峰. 液压支架乳化液的性能试验及其选择和维护方案[J]. 煤炭科学技术,2012,40(3):102-104. DOI: 10.13199/j.cst.2012.03.107.liyj.031

    LI Yajun,TONG Guofeng. Performance test on emulsion liquid of hydraulic powered support and selection and maintenance plan[J]. Coal Science and Technology,2012,40(3):102-104. DOI: 10.13199/j.cst.2012.03.107.liyj.031

    [5] 韦文术,ZHANG J,张健恺,等. 煤矿井下水处理反渗透膜的污染机理研究[J]. 煤炭科学技术,2021,49(4):103-110. DOI: 10.13199/j.cnki.cst.2021.04.013

    WEI Wenshu,ZHANG J,ZHANG Jiankai,et al. Study on mechanism of reverse osmosis membrane pollution of water treatment in underground coal mine[J]. Coal Science and Technology,2021,49(4):103-110. DOI: 10.13199/j.cnki.cst.2021.04.013

    [6] 王旭辉,邹元龙,赵锐锐,等. 高矿化度矿井废水深度处理及回用[J]. 中国给水排水,2009,25(22):56-58. DOI: 10.3321/j.issn:1000-4602.2009.22.015

    WANG Xuhui,ZOU Yuanlong,ZHAO Ruirui,et al. Advanced treatment and teuse of highly mineralized mine wastewater[J]. China Water & Wastewater,2009,25(22):56-58. DOI: 10.3321/j.issn:1000-4602.2009.22.015

    [7] 朱泽民,刘晨. 超滤−反渗透双膜法在甘肃某矿井水处理中的应用[J]. 给水排水,2019,55(6):77-81.

    ZHU Zemin,LIU Chen. Application of a mine water treatment station with ultrafiltration-reverse osmosis double membrane process in Gansu Province[J]. Water & Wastewater Engineering,2019,55(6):77-81.

    [8] 李大庆. JMSGLQ−70C型井下在线自清洗精密水过滤站应用[J]. 同煤科技,2014(3):47-49. DOI: 10.3969/j.issn.1000-4866.2014.03.017

    LI Daqing. Application of JMSGLQ-70C underground online self-cleaning precise water filtration station[J]. Science and Technology of Datong Coal Mining Administration,2014(3):47-49. DOI: 10.3969/j.issn.1000-4866.2014.03.017

    [9] 陈港,孟巧荣,王然风,等. 井下净水站过滤装置液压系统设计与建模仿真研究[J]. 煤炭工程,2018,50(5):146-149.

    CHEN Gang,MENG Qiaorong,WANG Ranfeng,et al. Design and model simulation of filtration device hydraulic system for underground water treatment plant[J]. Coal Engineering,2018,50(5):146-149.

    [10] 谢国正. 综采工作面智能化技术与装备的发展浅析[J]. 陕西煤炭,2020,39(3):181-183. DOI: 10.3969/j.issn.1671-749X.2020.03.044

    XIE Guozheng. Analysis on the development of intelligent technology and equipment in fully mechanized mining face[J]. Shaanxi Coal,2020,39(3):181-183. DOI: 10.3969/j.issn.1671-749X.2020.03.044

    [11] 李然,王伟. 综采集成供液系统智能监测诊断技术现状与发展[J]. 煤炭科学技术,2016,44(3):91-95. DOI: 10.13199/j.cnki.cst.2016.03.018

    LI Ran,WANG Wei. Status and development of intelligent monitoring and diagnosis technology for fully-mechanized integrated pressure pumping system[J]. Coal Science and Technology,2016,44(3):91-95. DOI: 10.13199/j.cnki.cst.2016.03.018

    [12] 张帅,任怀伟,韩安,等. 复杂条件工作面智能化开采关键技术及发展趋势[J]. 工矿自动化,2022,48(3):16-25. DOI: 10.13272/j.issn.1671-251x.2021090041

    ZHANG Shuai,REN Huaiwei,HAN An,et al. Key technology and development trend of intelligent mining in complex condition working face[J]. Journal of Mine Automation,2022,48(3):16-25. DOI: 10.13272/j.issn.1671-251x.2021090041

    [13] 冯旭. 基于无人值守的综采工作面乳化液远程自动配液系统的应用研究[J]. 中国煤炭,2016,42(4):66-70. DOI: 10.3969/j.issn.1006-530X.2016.04.014

    FENG Xu. Research and application of remote automatic liquid mixing system of emulsion in unattended fully mechanized working face[J]. China Coal,2016,42(4):66-70. DOI: 10.3969/j.issn.1006-530X.2016.04.014

    [14]

    YIN Wenqiang,LI Xin,RADITYA S S,et al. Fouling behavior of isolated dissolved organic fractions from seawaterin reverse osmosis(RO) desalination process[J]. Water Research,2019,159:385-396. DOI: 10.1016/j.watres.2019.05.038

    [15] 邱成鹏. 采煤工作面供液控制系统控制器的设计与应用[J]. 煤矿机电,2014(1):45-48. DOI: 10.3969/j.issn.1001-0874.2014.01.014

    QIU Chengpeng. Design and application of pumping controller in integrated fluid supply system at fully mechanized working face[J]. Colliery Mechanical & Electrical Technology,2014(1):45-48. DOI: 10.3969/j.issn.1001-0874.2014.01.014

    [16] 石进水. 基于LPC2294处理器的嵌入式PLC的设计[J]. 计算机测量与控制,2013,21(1):230-232. DOI: 10.3969/j.issn.1671-4598.2013.01.073

    SHI Jinshui. Design of embedded PLC based on LPC2294[J]. Computer Measurement & Control,2013,21(1):230-232. DOI: 10.3969/j.issn.1671-4598.2013.01.073

  • 期刊类型引用(7)

    1. 乔国栋,刘泽功,高魁,周云权,傅师贵. 切缝药包超前预裂爆破厚硬顶板矿压与瓦斯综合防治试验研究. 中国矿业大学学报. 2024(02): 334-345+376 . 百度学术
    2. 韩帅杰. 近距离煤层群采空区下回采巷道合理布置研究. 煤矿现代化. 2022(02): 1-5 . 百度学术
    3. 秦阳,赵凯,崔广甲,臧涛. 基于深孔预裂爆破的坚硬顶板卸压研究. 煤炭技术. 2022(05): 31-34 . 百度学术
    4. 杨科,刘文杰,李志华,刘钦节,池小楼,魏祯. 厚硬顶板下大倾角软煤开采灾变机制与防控技术. 煤炭科学技术. 2021(02): 12-20 . 百度学术
    5. 崔广甲,秦阳,臧涛,赵凯. 坚硬顶板预裂爆破模拟分析与研究. 山西煤炭. 2021(02): 74-78 . 百度学术
    6. 李强,吴桂义,孔德中. 近距离煤层群重复采动下端面冒顶影响因素分析及防治. 工矿自动化. 2021(08): 41-49 . 本站查看
    7. 王聪. 综采工作面厚硬顶板预裂爆破技术研究. 矿业装备. 2021(05): 108-109 . 百度学术

    其他类型引用(7)

图(13)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  66
  • PDF下载量:  43
  • 被引次数: 14
出版历程
  • 收稿日期:  2022-05-19
  • 修回日期:  2022-12-07
  • 网络出版日期:  2022-08-29
  • 刊出日期:  2022-12-26

目录

    /

    返回文章
    返回