孤岛工作面碎软煤层跟管护孔钻进工艺研究

陈超, 陈天柱, 张马军, 王常委

陈超,陈天柱,张马军,等. 孤岛工作面碎软煤层跟管护孔钻进工艺研究[J]. 工矿自动化,2023,49(1):73-79. DOI: 10.13272/j.issn.1671-251x.2022040084
引用本文: 陈超,陈天柱,张马军,等. 孤岛工作面碎软煤层跟管护孔钻进工艺研究[J]. 工矿自动化,2023,49(1):73-79. DOI: 10.13272/j.issn.1671-251x.2022040084
CHEN Chao, CHEN Tianzhu, ZHANG Majun, et al. Research on pipe-following hole protection drilling technology in broken soft coal seam of the isolated island working face[J]. Journal of Mine Automation,2023,49(1):73-79. DOI: 10.13272/j.issn.1671-251x.2022040084
Citation: CHEN Chao, CHEN Tianzhu, ZHANG Majun, et al. Research on pipe-following hole protection drilling technology in broken soft coal seam of the isolated island working face[J]. Journal of Mine Automation,2023,49(1):73-79. DOI: 10.13272/j.issn.1671-251x.2022040084

孤岛工作面碎软煤层跟管护孔钻进工艺研究

基金项目: 陕西省重点研发计划项目(2023-YBGY-082)。
详细信息
    作者简介:

    陈超(1988—),男,江苏徐州人,工程师,硕士,主要从事矿山地质与水文地质技术管理工作,E-mail:867826653@qq.com

  • 中图分类号: TD712.6

Research on pipe-following hole protection drilling technology in broken soft coal seam of the isolated island working face

  • 摘要: 针对孤岛工作面高应力碎软煤层钻孔易卡钻、塌孔导致钻孔成孔难度大、瓦斯抽采效果差的问题,开展跟管护孔钻进工艺研究。选取王坡煤矿3206孤岛工作面作为试验地点,分析得出该工作面需要采用大转矩、高转速钻机,以增强钻具排渣效果及孔内事故处理能力,同时需要考虑高应力区段钻孔护壁工艺及孔内高效排渣工艺。提出采用跟管护孔钻进工艺过高应力区,以达到护壁效果;采用螺旋钻进氮气辅助排渣工艺,以增强排渣能力,降低钻进过程中煤炭自燃的风险;钻孔穿过高应力区后,通过优化钻具组合,进一步提高钻孔在碎软煤层中的成孔深度。现场试验结果表明:相比于直接采用回转钻进施工钻孔,采用二级护孔钻进工艺施工钻孔平均孔深提高149%,采用三级护孔钻进工艺施工钻孔平均孔深提高114%,说明跟管护孔钻进工艺比回转钻进工艺更适合3206孤岛工作面碎软煤层钻孔施工;插接式螺旋钻杆施工钻孔成孔率高于丝扣连接式螺旋钻杆,螺旋钻进氮气辅助排渣工艺的成孔深度明显大于干式螺旋排渣工艺;$ {\text{ϕ}}$100/63.5−28 mm插接密封式螺旋钻杆及氮气辅助排渣工艺最适合3206孤岛工作面瓦斯预抽钻孔施工,平均孔深为100.6 m,成孔率为80%,瓦斯抽采效果优于其他钻具及钻进排渣工艺。
    Abstract: It is easy to get stuck and collapse in the borehole of high stress and broken soft coal seam in the isolated island working face. This leads to great difficulty in borehole formation and poor gas extraction effect. In order to solve this problem, this paper puts forward a pipe-following borehole protection drilling technology. The 3206 isolated island working face of Wangpo Coal Mine is selected as the test site. It is analyzed that the working face needs to use high-torque and high-speed drilling rig to enhance the slag removal effect of the drilling tool and the capability to deal with accidents in the borehole. At the same time, it is necessary to consider the process of drilling wall protection in the high-stress section and the efficient slag removal process in the borehole. It is proposed to adopt the pipe-following borehole protection drilling technology in the high stress zone to achieve the effect of wall protection. The spiral drilling nitrogen-assisted slag removal process is adopted to enhance slag removal capacity and reduce the risk of coal spontaneous combustion during drilling. After the borehole passes through the high-stress area, the drilling depth of the borehole in the broken soft coal seam is further improved by optimizing the drilling tool assembly. The field test results show that the average hole depth is increased by 149% when using the second-stage hole protection drilling than when using rotary drilling directly. The average hole depth is increased by 114% when using the third-stage hole protection drilling. It shows that the pipe-following hole protection drilling is more suitable for the drilling construction of broken soft coal seam in 3206 island working face than the rotary drilling construction technology. The hole-forming rate of the plug-type screw drill pipe is higher than that of the screw thread-type screw drill pipe. The hole-forming depth of nitrogen assisted slag removal process for screw drilling is significantly greater than that of the dry screw slag removal process. ${\text{ϕ}} $100/63.5-28 mm plug-in sealed spiral drill pipe and nitrogen assisted slag removal process are most suitable for gas pre-extraction drilling construction in 3206 isolated island working face. The average hole depth is 100.6 m, and the hole formation rate is 80%. The gas extraction effect is better than other drilling tools and drilling slag removal technology.
  • 图  1   钻孔区段分布

    Figure  1.   Distribution of drilling sections

    图  2   钻孔施工流程

    Figure  2.   Drilling construction flow

    图  3   二级护孔钻进工艺

    Figure  3.   The second-stage hole protection drilling technology

    图  4   三级护孔钻进工艺

    Figure  4.   The third-stage hole protection drilling technology

    图  5   套铣钻杆结构

    Figure  5.   Structure of milling drill pipe

    图  6   钻孔设计平面布置

    Figure  6.   Plane layout of drilling design

    图  7   钻孔施工效果对比

    Figure  7.   Comparison of drilling construction effects

    图  8   瓦斯抽采体积分数

    Figure  8.   Gas drainage volume fraction

    图  9   平均单孔瓦斯抽采纯量

    Figure  9.   Average net gas drainage volume of single hole

    表  1   钻孔施工情况

    Table  1   Drilling construction situation

    孔号孔径/mm孔深/m班次效率/
    (m·班−1)
    终孔原因
    11132345.75塌孔、卡钻
    211347315.67
    311323210.50
    411343410.75
    下载: 导出CSV

    表  2   钻机主要参数

    Table  2   Main technical data of drilling rig

    主要性能指标参数
    额定转矩/(N·m)1 750~10 000
    额定转速/(r·min−160~200
    主轴倾角/(°)−90~+90
    最大给进/起拔力/kN125/190
    电动机功率/kW90
    给进/起拔行程/mm1 300
    钻机质量/kg6 800
    钻机尺寸(长×宽×高)/(m×m×m)4 950×1 250×2 100
    下载: 导出CSV

    表  3   钻具性能对比

    Table  3   Performance comparison of drilling tools

    钻具组合螺旋叶片连接方式排渣形式
    ${\text{ϕ}} $60.3/95 mm焊接插接干式螺旋
    ${\text{ϕ}} $100/63.5−28 mm焊接插接干式螺旋/
    氮气辅助
    ${\text{ϕ}} $73/89 mm铣槽丝扣连接干式螺旋/
    氮气辅助
    ${\text{ϕ}} $89 mm三棱铣槽丝扣连接干式螺旋/
    氮气辅助
    下载: 导出CSV

    表  4   煤层顶底板情况

    Table  4   The roof-floor of coal seam

    顶底板岩石类别厚度/m岩性特征
    基本顶石英砂岩5.89灰白色细粒长石石英砂岩,有时相变为粉砂岩或泥质粉砂岩,交错层理发育
    直接顶砂质泥岩10.68黑色泥岩,局部含粉砂,含植物化石,局部见炭质泥岩
    伪顶炭质泥岩0.3黑色,质软,含植物化石,随采掘脱落
    直接底泥岩9.16灰黑色−黑色泥岩,夹薄层粉砂质泥岩,上部含植物化石,底部偶见4号煤,不可采,平均厚0.01 m
    基本底石英砂岩2.03灰白色中细粒长石石英砂岩,硅质胶结
    下载: 导出CSV

    表  5   钻孔施工试验结果

    Table  5   Drilling construction test results

    施工工艺钻孔
    个数
    平均
    孔深/m
    最大
    孔深/m
    二级护孔
    深度/m
    三级护孔
    深度/m
    二级护孔4789.715016~28
    三级护孔2177.213215~2530~52
    回转钻进43647
    下载: 导出CSV

    表  6   钻孔数据

    Table  6   Borehole data

    钻具组合钻孔
    个数
    累计
    进尺/m
    平均
    孔深/m
    成孔率/%效率/
    (m·d−1)
    ${\text{ϕ}} $60.3/95 mm231 60269.76094.2
    ${\text{ϕ}} $73/89 mm10837.583.855.6119.6
    ${\text{ϕ}} $89 mm三棱131 18591.254.5118.5
    ${\text{ϕ}} $100/63.5−28 mm222 214100.680123
    下载: 导出CSV
  • [1] 孔维一,赵和平,刘泉霖,等. 瓦斯抽采钻孔喷涂式封孔技术[J]. 工矿自动化,2021,47(12):19-24. DOI: 10.13272/j.issn.1671-251x.2021050022

    KONG Weiyi,ZHAO Heping,LIU Quanlin,et al. Spray sealing technology for gas extraction drilling[J]. Industry and Mine Automation,2021,47(12):19-24. DOI: 10.13272/j.issn.1671-251x.2021050022

    [2] 刘飞,许超,王鲜,等. 顺煤层超长定向钻孔钻压传递规律研究[J]. 工矿自动化,2019,45(8):97-100.

    LIU Fei,XU Chao,WANG Xian,et al. Research of weight on bit transmission law of ultra-long directional borehole along coal seam[J]. Industry and Mine Automation,2019,45(8):97-100.

    [3] 郭永军. 王坡矿3210孤岛工作面矿压分布规律探讨[J]. 江西煤炭科技,2020(2):1-3. DOI: 10.3969/j.issn.1006-2572.2020.02.002

    GUO Yongjun. Study on law of rock pressure at 3210 island coal face in Wangpo Colliery[J]. Jiangxi Coal Science & Technology,2020(2):1-3. DOI: 10.3969/j.issn.1006-2572.2020.02.002

    [4] 刘鑫. 孤岛工作面水侵沿空巷道围岩稳控技术研究[J]. 工矿自动化,2021,47(9):118-125.

    LIU Xin. Research on stability control technology of surrounding rock along goaf roadway with water intrusion in isolated island working face[J]. Industry and Mine Automation,2021,47(9):118-125.

    [5] 姜希印,陶维国. 孤岛工作面冲击地压多指标监测及危险性区域划分[J]. 工矿自动化,2020,46(1):44-49.

    JIANG Xiyin,TAO Weiguo. Multi-index monitoring of rock burst and risk zone division of island mining coal face[J]. Industry and Mine Automation,2020,46(1):44-49.

    [6] 张茂微,鲁健. 孤岛工作面过上覆采空区采场及顶板应力演化规律研究[J]. 煤炭工程,2020,52(12):108-112.

    ZHANG Maowei,LU Jian. Stress evolution law of stope and roof of isolated working face advancing beneath overlying goaf[J]. Coal Engineering,2020,52(12):108-112.

    [7] 郭忠华. 孤岛工作面巷道钻孔卸压机理及关键参数确定[J]. 太原理工大学学报,2020,51(6):906-911. DOI: 10.16355/j.cnki.issn1007-9432tyut.2020.06.018

    GUO Zhonghua. Borehole destressing mechanism and key parameters determination of roadway in isolated working face[J]. Journal of Taiyuan University of Technology,2020,51(6):906-911. DOI: 10.16355/j.cnki.issn1007-9432tyut.2020.06.018

    [8] 范晓刚,马钱钱,范彦阳. 应力集中区瓦斯抽采钻孔施工工艺研究与应用[J]. 能源技术与管理,2019,44(1):34-36. DOI: 10.3969/j.issn.1672-9943.2019.01.014

    FAN Xiaogang,MA Qianqian,FAN Yanyang. Study and application of gas drainage drilling technology in stress concentration area[J]. Energy Technology and Management,2019,44(1):34-36. DOI: 10.3969/j.issn.1672-9943.2019.01.014

    [9] 郝永进,李乔乔,王毅,等. 松软突出煤层复合排渣钻进技术试验研究[J]. 探矿工程(岩土钻掘工程),2016,43(6):22-25.

    HAO Yongjin,LI Qiaoqiao,WANG Yi,et al. Composite slag discharging drilling technology in soft and outburst coal seam[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2016,43(6):22-25.

    [10] 张宏钧,姚克,张幼振. 松软煤层螺旋钻杆与压风复合排渣钻进技术装备[J]. 煤矿安全,2017,48(7):99-102. DOI: 10.13347/j.cnki.mkaq.2017.07.026

    ZHANG Hongjun,YAO Ke,ZHANG Youzhen. Spiral drill pipe and composite slag discharge drilling technology and equipment in soft coal seam[J]. Safety in Coal Mines,2017,48(7):99-102. DOI: 10.13347/j.cnki.mkaq.2017.07.026

    [11] 方俊,李泉新,许超,等. 松软突出煤层瓦斯抽采钻孔施工技术及发展趋势[J]. 煤炭科学技术,2018,46(5):130-137,172.

    FANG Jun,LI Quanxin,XU Chao,et al. Construction technology and development tendency of gas drainage borehole in soft and outburst seam[J]. Coal Science and Technology,2018,46(5):130-137,172.

    [12] 孙平贺,刘伟胜,杨涵涵,等. 中国非开挖水平定向钻进装备与技术研究应用进展[J]. 工程科学学报,2022,44(1):122-130. DOI: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201012

    SUN Pinghe,LIU Weisheng,YANG Hanhan,et al. Progress in research and applications of trenchless horizontal directional drilling equipment and technology in China[J]. Chinese Journal of Engineering,2022,44(1):122-130. DOI: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201012

    [13] 许超,姜磊,王鲜,等. 顺煤层超长定向钻孔复合钻进摩阻规律研究[J]. 煤田地质与勘探,2021,49(5):265-271.

    XU Chao,JIANG Lei,WANG Xian,et al. Friction law of compound drilling along the coal seam with super-long directional drilling[J]. Coal Geology & Exploration,2021,49(5):265-271.

    [14] 宋传祥,贾楠生,季文淼,等. 定向钻进技术与装备在穿层定向长钻孔中的应用[J]. 钻探工程,2021,48(8):83-88.

    SONG Chuanxiang,JIA Nansheng,JI Wenmiao,et al. Application of directional drilling technology and equipment in cross-bed directional long hole drilling[J]. Drilling Engineering,2021,48(8):83-88.

    [15] 赵建国,李泉新,刘建林,等. 煤矿井下双级双速扩孔技术研究与应用[J]. 煤炭科学技术,2021,49(7):133-138. DOI: 10.13199/j.cnki.cst.2021.07.018

    ZHAO Jianguo,LI Quanxin,LIU Jianlin,et al. Research and application of two-stage and two-speed reaming technology in coal mine[J]. Coal Science and Technology,2021,49(7):133-138. DOI: 10.13199/j.cnki.cst.2021.07.018

图(9)  /  表(6)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  57
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 修回日期:  2022-12-29
  • 网络出版日期:  2022-08-29
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回