Abstract:
The existing research on the spontaneous combustion characteristics of oxidized coal is mostly based on the coal samples prepared under the conditions of lower oxidation temperature and air. It lacks the analysis of the kinetic characteristics during the oxidation process of oxidized coal. In order to solve the above problems, the C80 microcalorimeter is used to study the exothermic and kinetic characteristics of low-temperature oxidation reaction of preoxidized coal prepared under different oxidation temperatures (100, 200, 300 ℃) and oxygen volume fraction (21%, 15%, 5%). The effects of oxidation temperature and oxygen concentration on the activation energy of low-temperature oxidation reaction of preoxidized coal are discussed. The analysis results of low-temperature oxidation exothermic characteristics of preoxidized coal are shown as follows. ① The low-temperature oxidation process of preoxidized coal lags behind that of raw coal. The degree of lag increases with the increase of oxidation temperature and oxygen concentration. ② The heat release of low-temperature oxidation reaction of preoxidized coal is lower than that of raw coal. The heat release gradually decreases with the increase of oxidation temperature and oxygen concentration. When the oxidation temperature is 100 ℃,
t1 (the temperature at which the heat flow value starts >0),
t2 (the temperature corresponding to the maximum growth rate of heat flow value) and the reaction heat of low-temperature oxidation of preoxidized coals with different oxygen concentrations are basically equal. ③ With the increase of oxidation temperature, the effect of oxygen concentration on
t1,
t2 and the reaction heat of low-temperature oxidation is gradually obvious. The results show that the effect of oxygen concentration on the low-temperature oxidation reaction of preoxidized coal is only reflected at higher oxidation temperatures. However, too high oxidation temperature will lead to a serious lag of the low-temperature oxidation reaction process of pre-oxidized coal and the reaction heat release is less than 0. The analysis results of kinetic parameters (activation energy and pre-exponential factor) of low-temperature oxidation of pre-oxidized coal are shown as follows. ① The activation energy of the low-temperature oxidation reaction of pre-oxidized coal in the accelerated oxidation stage is higher than that of raw coal. The activation energy of the rapid oxidation stage is lower than that of raw coal. The results show that the threshold of the oxidation reaction of pre-oxidized coal entering the accelerated oxidation stage is increased, but it is easier to enter the rapid oxidation stage. ② The pre-exponential factor data show that the low-temperature oxidation reaction of pre-oxidized coal is more rapid than that of raw coal. ③ The changes of oxidation temperature and oxygen concentration have no obvious regularity with the activation energy of the low-temperature oxidation process of preoxidized coal. In the accelerated oxidation stage, the activation energy increases with the increase of oxidation temperature. The activation energy first decreases and then increases with the increase of oxygen concentration. In the rapid oxidation stage, when the oxidation temperature is 100 ℃, the activation energy first decreases and then increases with the increase of oxygen concentration, while 200 ℃ is the opposite.