基于Z型接地变压器的配电网单相接地故障柔性消弧系统

司渭滨, 马柯翔, 雷智荣, 党长富, 宋国兵, 贠保记, 刘彬

司渭滨,马柯翔,雷智荣,等. 基于Z型接地变压器的配电网单相接地故障柔性消弧系统[J]. 工矿自动化,2022,48(5):85-92. DOI: 10.13272/j.issn.1671-251x.2021110024
引用本文: 司渭滨,马柯翔,雷智荣,等. 基于Z型接地变压器的配电网单相接地故障柔性消弧系统[J]. 工矿自动化,2022,48(5):85-92. DOI: 10.13272/j.issn.1671-251x.2021110024
SI Weibin, MA Kexiang, LEI Zhirong, et al. Flexible arc suppression method for single-phase to ground fault in distribution network based on Z-type grounding transformer[J]. Journal of Mine Automation,2022,48(5):85-92. DOI: 10.13272/j.issn.1671-251x.2021110024
Citation: SI Weibin, MA Kexiang, LEI Zhirong, et al. Flexible arc suppression method for single-phase to ground fault in distribution network based on Z-type grounding transformer[J]. Journal of Mine Automation,2022,48(5):85-92. DOI: 10.13272/j.issn.1671-251x.2021110024

基于Z型接地变压器的配电网单相接地故障柔性消弧系统

基金项目: 陕西省重点产业创新(群)项目(2019ZDLGY18-07);国网陕西省电力有限公司科技项目(B626KY190001)。
详细信息
    作者简介:

    司渭滨(1980—),男,陕西西安人,高级工程师,博士,研究方向为电气工程及其自动化,E-mail:newsvb@163.com

    通讯作者:

    马柯翔(1996—),男,宁夏银川人,硕士研究生,研究方向为电气工程及其自动化,E-mail:29034711@qq.com

  • 中图分类号: TD611

Flexible arc suppression method for single-phase to ground fault in distribution network based on Z-type grounding transformer

  • 摘要: 煤矿供配电系统通常采用中性点非有效接地方式,该方式下的供电线路多数采用电缆线路,井下供电系统复杂,使用的电压等级较多,发生单相接地故障时极易在接地点形成间歇性电弧。而现有中性点非有效接地配电网单相接地故障消弧技术存在消弧效果不佳、难以精准测量配电网对地参数等问题。我国煤矿10 kV变电站中变压器绕组最常用的接线方式是三角形接线,该方式需通过专用接地变压器(大多是Z型接地变压器)人为引出中性点连接消弧线圈。针对上述情况,设计了一种基于Z型接地变压器的配电网单相接地故障柔性消弧系统。当配电网发生接地故障初始时刻,首先实时测量配电网的三相电源电动势和中性点电压,当中性点电压幅值大于三相电源电动势的15%时,可判断为接地故障;对比三相电源电动势,其中电源电动势最小相为故障相。在单相接地故障发生后,迅速闭合故障相对应的快速投切开关,同时投入有源逆变器和Z型接地变压器功率转换模块,其中Z型接地变压器功率转换模块将中性点电压反相钳制接近于故障相电源电动势,中性点电压与故障相电源电压差值的幅值和相位由有源逆变器精确补偿,实现将故障点电压和电流抑制至零的控制目标。一定时间延时后切除快速投切开关,若中性点电压有效降低则可判断该故障为瞬时性接地故障,即可恢复配电网正常运行,否则判断为永久性故障,采取故障馈线隔离措施,恢复配电网正常运行。仿真结果表明,当单相接地故障过渡电阻为500 Ω和3 000 Ω时,仅通过Z型接地变压器功率转换,故障点电压和电流抑制率达79%~83%,不能完全达到消弧效果;投入柔性消弧系统可有效抑制故障点电压和电流,抑制率达98%以上,实现配电网单相接地故障的可靠消弧。
    Abstract: The coal mine power supply and distribution system usually adopts the neutral point non-effectively grounded method. Most of the power supply lines in this method use cable lines. The underground power supply system is complex and uses many voltage levels. When a single-phase to ground fault occurs, it is easy to form intermittent arcs at the grounding point. Moreover, the existing single-phase to ground fault arc suppression technology of the neutral point non-effectively grounded distribution network has the problem of poor arc suppression effect and difficulty in accurately measuring the parameters of the distribution network to the ground. The most common connection method of transformer winding in 10 kV substation of coal mine in China is delta connection. This mode needs to lead out neutral point and connect arc suppression coil artificially through special grounding transformer (mostly Z-type grounding transformer). In order to solve the above problems, a flexible arc suppression system for single-phase to ground fault of distribution network based on Z-type grounding transformer is designed. When the initial time of grounding fault occurs in the distribution network, the three-phase power supply electromotive force and the neutral point voltage of the power distribution network are firstly measured in real time. When the amplitude of the neutral point voltage is greater than 15% of the three-phase power supply electromotive force, it can be judged as a grounding fault. Compared with the three-phase power supply electromotive force, the phase with the smallest power supply electromotive force is the fault phase. After a single-phase to ground fault occurs, the fast switching switch corresponding to the fault phase is quickly closed. And the active inverter and the Z-type grounding transformer power conversion module are simultaneously put into operation. The Z-type grounding transformer power conversion module clamps the voltage of a neutral point in an opposite phase to be close to the electromotive force of the fault phase power supply. And the amplitude and the phase of the difference between the neutral voltage and the fault phase supply voltage are precisely compensated by the active inverter. Therefore, the control target of suppressing the voltage and the current at the fault point to zero is achieved. After a certain time delay, the fast switching switch is cut off. If the voltage of the neutral point is effectively reduced, it can be judged that the fault is a transient ground fault. And the normal operation of the power distribution network system can be restored. Otherwise, it is judged as a permanent fault. The measures to isolate the fault feeder are taken to restore the normal operation of the distribution network. The simulation results show that when the single-phase to ground fault transition resistance is 500 Ω and 3 000 Ω, the power conversion is only through the Z-type grounding transformer. The voltage and current suppression rate at the fault point reaches 79%-83%, which cannot fully achieve the effect of arc suppression. The flexible arc suppression system can effectively suppress the voltage and current at the fault point, with a suppression rate of more than 98%, realizing reliable arc suppression of single-phase to ground faults in the distribution network.
  • 图  1   接地变压器Zn,yn11接线方式

    Figure  1.   Zn, yn11 wiring mode of grounding transformer

    图  2   柔性消弧系统原理

    Figure  2.   Principle of flexible arc suppression system

    图  3   柔性消弧系统流程

    Figure  3.   Flow of flexible arc suppression system

    图  4   中性点非有效接地配电网单相接地故障仿真模型

    Figure  4.   Simulation model of single-phase to ground fault of neutral point non-effectively grounded distribution network

    图  5   故障相电源电压相反数和中性点电压仿真波形(过渡电阻500 Ω)

    Figure  5.   Simulation waveforms of the opposite number of the fault phase power supply voltage and the neutral point voltage (transition resistance 500 Ω)

    图  8   故障点电压、故障点电流和消弧装置注入电流仿真波形(过渡电阻3 000 Ω)

    Figure  8.   Simulation waveforms of fault point voltage, fault point current and injection current of arc suppression device (transition resistance 3 000 Ω)

    图  6   故障点电压、故障点电流和消弧装置注入电流仿真波形(过渡电阻500 Ω)

    Figure  6.   Simulation waveforms of fault point voltage, fault point current and injection current of arc suppression device (transition resistance 500 Ω)

    图  7   故障相电源电压相反数和中性点电压仿真波形(过渡电阻3 000 Ω)

    Figure  7.   Simulation waveforms of the opposite number of the fault phase power supply voltage and the neutral point voltage (transition resistance 3 000 Ω)

    图  9   故障相电源电压相反数和中性点电压仿真波形(过渡电阻500 Ω)

    Figure  9.   Simulation waveforms of the opposite number of the fault phase power supply voltage and the neutral point voltage(transition resistance 500 Ω)

    图  12   故障点电压、故障点电流和柔性消弧系统注入电流仿真波形(过渡电阻3 000 Ω)

    Figure  12.   Simulation waveforms of fault point voltage, fault point current and injection current of flexible arc suppression system (transition resistance 3 000 Ω)

    图  10   故障点电压、故障点电流和柔性消弧系统注入电流仿真波形(过渡电阻500 Ω)

    Figure  10.   Simulation waveforms of fault point voltage, fault point current and injection current of flexible arc suppression system(transition resistance 500 Ω)

    图  11   故障相电源电压相反数和中性点电压仿真波形(过渡电阻3 000 Ω)

    Figure  11.   Simulation waveforms of the opposite number of the fault phase power supply voltage and the neutral point voltage(transition resistance 3 000 Ω)

    表  1   不同过渡电阻下仿真结果

    Table  1   Simulation results under different transition resistances

    过渡电阻/ΩEA/VUN/VUf/VIf/AI1/A
    500未投5 7594 8103 0326.06
    投入5 7595 8546491.302.42
    3 000未投5 7591 5305 1691.73
    投入5 7595 8419100.303.36
    下载: 导出CSV

    表  2   不同过渡电阻下仿真结果

    Table  2   Simulation results under different transition resistances

    过渡电阻/ΩEA/VUN/VUf/VIf/AI1/A
    500未投5 7594 8103 0326.06
    投入5 7595 76561.060.123.49
    3000未投5 7591 5305 1691.73
    投入5 7595 85262.790.023.55
    下载: 导出CSV
  • [1] 罗超,耿蒲龙,曲兵妮,等. 矿井供电系统单相接地故障零模特征仿真研究[J]. 工矿自动化,2018,44(6):57-63.

    LUO Chao,GENG Pulong,QU Bingni,et al. Simulation research on zero-module characteristics of single-phase grounding fault in mine power supply system[J]. Industry and Mine Automation,2018,44(6):57-63.

    [2] 司韶文. 煤矿电网单相间歇性电弧接地故障的研究[D]. 西安: 西安科技大学, 2021.

    SI Shaowen. Research of single-phase intermittent arc ground failure in coal distribution network[D]. Xi'an: Xi'an University of Science and Technology, 2021.

    [3] 要焕年, 曹梅月. 电力系统谐振接地[M]. 北京: 中国电力出版社, 2009.

    YAO Huannian, CAO Meiyue. Resonant grounding of power system[M]. Beijing: China Power Press, 2009.

    [4] 宗伟林,许文强,原亚雷,等. 矿井配电网单相接地故障选线与定位新方法[J]. 工矿自动化,2016,42(11):45-50.

    ZONG Weilin,XU Wenqiang,YUAN Yalei,et al. A new type of single-phase grounding fault line selection and location method for mine distribution network[J]. Industry and Mine Automation,2016,42(11):45-50.

    [5] 苏展,于绍峰,王洋. Z型联结组别接地变低压核相异常分析[J]. 变压器,2021,58(10):30-33.

    SU Zhan,YU Shaofeng,WANG Yang. Analysis of abnormal low-voltage phase check situation of Z-type grounding transformer[J]. Transformer,2021,58(10):30-33.

    [6] 郭谋发,游建章,张伟骏,等. 基于三相级联H桥变流器的配电网接地故障分相柔性消弧方法[J]. 电工技术学报,2016,31(17):11-22. DOI: 10.3969/j.issn.1000-6753.2016.17.002

    GUO Moufa,YOU Jianzhang,ZHANG Weijun,et al. Separate-phase flexible arc-suppression method of earth-fault in distribution systems based on three-phase cascaded H-bridge converter[J]. Transactions of China Electrotechnical Society,2016,31(17):11-22. DOI: 10.3969/j.issn.1000-6753.2016.17.002

    [7] 贠保记,马柯翔,司渭滨,等. 配电网单相接地故障的柔性熄弧装置[J]. 电力系统保护与控制,2021,49(19):124-134.

    YUN Baoji,MA Kexiang,SI Weibin,et al. Flexible arc extinguishing device for a single-phase ground fault in a distribution network[J]. Power System Protection and Control,2021,49(19):124-134.

    [8] 曾祥君,卓超,喻锟,等. 基于接地变压器绕组分档调压干预的配电网主动降压消弧与保护新方法[J]. 中国电机工程学报,2020,40(5):1523-1534.

    ZENG Xiangjun,ZHUO Chao,YU Kun,et al. A novel method of faults arc extinguishing and feeder protection based on voltage regulating intervention with grounding transformer winding taps for distribution networks[J]. Proceedings of the CSEE,2020,40(5):1523-1534.

    [9] 郭谋发,陈静洁,张伟骏,等. 基于单相级联H桥变流器的配电网故障消弧与选线新方法[J]. 电网技术,2015,39(9):2677-2684.

    GOU Moufa,CHEN Jingjie,ZHANG Weijun,et al. A novel approach for fault arc extinguishing and feeder selection in distribution networks based on single-phase cascade H-bridge converter[J]. Power System Technology,2015,39(9):2677-2684.

    [10] 刘宝稳,马宏忠,沈培锋,等. 新型接地故障基波电流全补偿柔性控制系统[J]. 中国电机工程学报,2016,36(9):2322-2330.

    LIU Baowen,MA Hongzhong,SHEN Peifeng,et al. New flexible control system of full compensation single-phase ground fault fundamental current[J]. Proceedings of the CSEE,2016,36(9):2322-2330.

    [11] 王崇林,刘建华. 三相五柱式消弧线圈及其自动跟踪补偿原理[J]. 中国矿业大学学报,1999,28(5):57-61.

    WANG Chonglin,LIU Jianhua. Arc suppression coil with three phases and five columns and its automatic compensation principle[J]. Journal of China University of Mining & Technology,1999,28(5):57-61.

    [12] 曾祥君,胡京莹,王媛媛,等. 基于柔性接地技术的配电网三相不平衡过电压抑制方法[J]. 中国电机工程学报,2014,34(4):678-684.

    ZENG Xiangjun,HU Jingying,WANG Yuanyuan,et al. Suppressing method of three-phase unbalanced overvoltage based on distribution networks flexible grounding control[J]. Proceedings of the CSEE,2014,34(4):678-684.

    [13] 蒋仁江,英云龙,秦志成,等. Z型接地变压器在PSCAD下的仿真模型构建[J]. 价值工程,2015,34(29):137-138.

    JIANG Renjiang,YING Yunlong,QIN Zhicheng,et al. Simulation model of zigzag grounding transformer by PSCAD[J]. Value Engineering,2015,34(29):137-138.

  • 期刊类型引用(3)

    1. 李科,许长清,马杰,孙义豪,郭新志. 考虑最大供电能力的链式供电结构自愈系统设计. 电子设计工程. 2024(04): 116-120 . 百度学术
    2. 李运旺,陈俊德,张大平,桑云,韩晓蕾. 基于S变换相关度的配电网单相接地自适应有源消弧法. 电气传动. 2024(07): 86-92 . 百度学术
    3. 费上贝. 系统单相接地故障下接地变压器的运行特性探讨. 光源与照明. 2022(08): 111-113 . 百度学术

    其他类型引用(2)

图(12)  /  表(2)
计量
  • 文章访问数:  252
  • HTML全文浏览量:  41
  • PDF下载量:  24
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-11-09
  • 修回日期:  2022-04-23
  • 网络出版日期:  2022-03-04
  • 刊出日期:  2022-05-26

目录

    /

    返回文章
    返回