悬臂式掘进机位姿视觉检测系统改进

张旭辉, 王恒, 沈奇峰, 杨文娟, 张超

张旭辉,王恒,沈奇峰,等. 悬臂式掘进机位姿视觉检测系统改进[J]. 工矿自动化,2022,48(5):58-64. DOI: 10.13272/j.issn.1671-251x.2021100051
引用本文: 张旭辉,王恒,沈奇峰,等. 悬臂式掘进机位姿视觉检测系统改进[J]. 工矿自动化,2022,48(5):58-64. DOI: 10.13272/j.issn.1671-251x.2021100051
ZHANG Xuhui, WANG Heng, SHEN Qifeng, et al. Improvement of position and posture measurement system for boom-type roadheader based on machine vision[J]. Journal of Mine Automation,2022,48(5):58-64. DOI: 10.13272/j.issn.1671-251x.2021100051
Citation: ZHANG Xuhui, WANG Heng, SHEN Qifeng, et al. Improvement of position and posture measurement system for boom-type roadheader based on machine vision[J]. Journal of Mine Automation,2022,48(5):58-64. DOI: 10.13272/j.issn.1671-251x.2021100051

悬臂式掘进机位姿视觉检测系统改进

基金项目: 国家自然科学基金青年项目(52104166);陕煤联合基金项目(2021JLM-03);陕西省重点研发计划项目(2018ZDCXL-GY-06-04)。
详细信息
    作者简介:

    张旭辉(1972—),男,陕西凤翔人,教授,博士,研究方向为煤矿机电设备智能检测与控制,E-mail:zhangxh@xust.edu.cn

    通讯作者:

    王恒(1997—),男,陕西咸阳人,硕士研究生,主要研究方向为智能检测与控制、视觉定位,E-mail:wh9726@163.com

  • 中图分类号: TD632

Improvement of position and posture measurement system for boom-type roadheader based on machine vision

  • 摘要: 煤矿井下粉尘浓度高、照度低,图像采集质量和特征提取效果受粉尘浓度影响较大,而相机参数和图像处理参数不能根据粉尘浓度变化自适应调整,易产生点−线特征提取不稳定和图像丢帧等问题。针对上述问题,对掘进机位姿视觉检测系统进行改进,利用矿用防爆工业相机采集不同粉尘浓度下的激光点−线图像,通过透过率建立图像灰度值与粉尘浓度等级的关系模型,通过实验获取不同粉尘浓度等级下的最优相机参数和图像处理参数;提出一种参数自适应调整算法,根据粉尘浓度等级自适应调整参数值,提高图像采集质量和点−线特征提取的稳定性和精度,进而提高掘进机位姿视觉检测系统的精度。实验结果表明:改进后悬臂式掘进机位姿视觉检测系统在XYZ方向的平均测量误差分别为28.26,30.58,22.54 mm,处理100张图像后得到的可用图像从75张提高到90张,说明参数自适应调整算法有效提高了图像特征提取精度和数据可用性,从而保证了悬臂式掘进机位姿视觉检测系统的精度和稳定性。
    Abstract: In coal mine, the dust concentration is high and the illumination is low. The image acquisition quality and characteristic extraction effect are greatly affected by dust concentration. However, the camera parameters and image processing parameters cannot be adjusted adaptively according to the change of dust concentration. Therefore, it is easy to cause problems such as unstable point-line characteristic extraction and image frame loss. In order to solve the above problems, the position and posture measurement system for boom-type roadheader based on machine vision is improved. The mine-used explosion-proof industrial camera is used to collect the laser point-line images under different dust concentrations. The relationship model between the image gray value and the dust concentration level is established through the transmittance. The optimal camera parameters and image processing parameters under different dust concentration levels are obtained through experiments. A parameter adaptive adjustment algorithm is proposed, and the parameter values are adjusted adaptively according to the dust concentration levels. Therefore, the image collection quality and the stability and precision of the point-line characteristic extraction are improved. Moreover, the precision of position and posture measurement system for roadheader based on machine vision is improved. The experimental result show that the average measurement errors in X, Y and Z directions of the improved vision detection system for boom-type roadheader are 28.26 mm, 30.58 mm and 22.54 mm respectively. The number of usable images is increased from 75 to 90 after processing 100 images. These results show that the parameter adaptive adjustment algorithm can effectively improve the precision of image characteristic extraction and the data availability. The algorithm ensures the precision and stability of position and posture measurement system for boom-type roadheader based on machine vision.
  • 图  1   悬臂式掘进机位姿视觉检测系统

    Figure  1.   Position and posture measurement system for boom-type roadheader based on machine vision

    图  2   改进后悬臂式掘进机位姿视觉检测系统流程

    Figure  2.   Flow of the improved position and posture measurement system for boom-type roadheader based on machine vision

    图  3   悬臂式掘进机位姿视觉检测系统实验平台

    Figure  3.   Experimental platform for position and posture measurement system for boom-type roadheader based on machine vision

    图  4   不同粉尘浓度等级下的激光束图像

    Figure  4.   Laser beam images under different dust concentration levels

    图  5   掘进机位姿测量误差

    Figure  5.   The measurement error of the position and posture of the roadheader

    表  1   图像灰度值与粉尘浓度等级的关系

    Table  1   The relationship between image gray value and dust concentration level

    灰度值透过率/%粉尘浓度等级
    160~2000~20超高浓度
    120~16020~40高浓度
    70~12040~70中浓度
    40~7070~100低浓度
    下载: 导出CSV

    表  2   中浓度粉尘环境下参数选取实验结果

    Table  2   Experimental results of parameter selection in medium-concentration dust environment

    曝光时间/μsSminVmin测量值/mm可用
    图像/张
    XYZ
    40 0002525
    35
    45−124.39964.1112.365
    3525−123.39959.2116.372
    35−125.29962.5115.176
    45−128.19969.3113.391
    4525−125.49965.3110.778
    35−126.89968.1112.188
    45
    60 0002525
    35
    45−125.49964.3110.778
    3525−122.39965.6110.380
    35−126.29967.8112.184
    45−124.19966.6114.388
    4525−126.49967.5115.790
    35−126.19969.2113.194
    45
    80 0002525
    35
    45
    3525
    35−126.29965.5112.175
    45−127.99961.2115.379
    4525
    35−127.89963.1111.184
    45−129.19970.3114.380
    下载: 导出CSV

    表  3   不同粉尘浓度等级下的最优相机和图像处理参数

    Table  3   Optimal camera and image processing parameters under different dust concentration levels

    粉尘浓度等级曝光时间/μsSminVmin
    高浓度60 0004535,45
    中浓度60 00035,4535
    低浓度40 0003545
    下载: 导出CSV

    表  4   掘进机位姿检测实验结果

    Table  4   The experimental results of the position and posture detection of the roadheader

    项目编号X/mmY/mmZ/mm
    位姿真实值1−10010 000−90
    2−20015 000−90
    3−30020 000−90
    4−35025 000−90
    5−42030 000−90
    位姿测量值
    (非自适应调整)
    1−135.29 963.8−120.6
    2−169.415 039.5−60.9
    3−339.820 039.2−118.8
    4−312.424 958.5−60.4
    5−458.530 042.2−59.2
    位姿测量值
    (自适应调整)
    1−128.19 969.3−113.3
    2−173.615 031.2−67.5
    3−329.520 029.7−112.1
    4−321.924 970.5−68.9
    5−449.230 031.8−66.3
    下载: 导出CSV

    表  5   参数自适应与非自适应调整算法误差对比

    Table  5   Error comparison between parameter adaptive adjustment algorithm and non-adaptive adjustment algorithm

    参数调整
    算法
    最大误差/mm平均误差/mm可用
    图像/张
    X 方向Y 方向Z 方向X 方向Y 方向Z 方向
    非自适应 39.8 42.2 30.8 36.34 39.74 29.78 75
    自适应 29.5 31.8 23.7 28.26 30.58 22.54 90
    下载: 导出CSV
  • [1] 王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1-36.

    WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction (primary stage)[J]. Coal Science and Technology,2019,47(8):1-36.

    [2] 葛世荣. 煤矿机器人现状及发展方向[J]. 中国煤炭,2019,45(7):18-27. DOI: 10.3969/j.issn.1006-530X.2019.07.004

    GE Shirong. Present situation and development direction of coal mine robots[J]. China Coal,2019,45(7):18-27. DOI: 10.3969/j.issn.1006-530X.2019.07.004

    [3] 王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305.

    WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305.

    [4] 杨健健,张强,王超,等. 煤矿掘进机的机器人化研究现状与发展[J]. 煤炭学报,2020,45(8):2995-3005.

    YANG Jianjian,ZHANG Qiang,WANG Chao,et al. Status and development of robotization research on roadheader for coal mines[J]. Journal of China Coal Society,2020,45(8):2995-3005.

    [5] 张超,张旭辉,杜昱阳,等. 基于双目视觉的悬臂式掘进机位姿测量技术研究[J]. 煤炭科学技术,2021,49(11):225-235.

    ZHANG Chao,ZHANG Xuhui,DU Yuyang,et al. Pose measurement technology of cantilever roadheader based on binocular vision[J]. Coal Science and Technology,2021,49(11):225-235.

    [6] 薛光辉,张云飞,候称心,等. 基于激光靶向扫描的掘进机位姿测量方法[J]. 煤炭科学技术,2020,48(11):19-25.

    XUE Guanghui,ZHANG Yunfei,HOU Chenxin,et al. Measurement of roadheader position and posture based on orientation laser scanning[J]. Coal Science and Technology,2020,48(11):19-25.

    [7] 贾文浩,陶云飞,张敏骏,等. 基于iGPS的煤巷狭长空间中掘进机绝对定位精度研究[J]. 仪器仪表学报,2016,37(8):1920-1926. DOI: 10.3969/j.issn.0254-3087.2016.08.025

    JIA Wenhao,TAO Yunfei,ZHANG Minjun,et al. Research on absolute positioning accuracy of roadheader based on indoor global positioning system in narrow and long coal tunnel[J]. Chinese Journal of Scientific Instrument,2016,37(8):1920-1926. DOI: 10.3969/j.issn.0254-3087.2016.08.025

    [8] 刘超,符世琛,成龙,等. 基于TSOA定位原理混合算法的掘进机位姿检测方法[J]. 煤炭学报,2019,44(4):1255-1264.

    LIU Chao,FU Shichen,CHENG Long,et al. Pose detection method based on hybrid algorithm of TSOA positioning principle for roadheader[J]. Journal of China Coal Society,2019,44(4):1255-1264.

    [9] 毛清华,张旭辉,马宏伟,等. 多传感器信息的悬臂式掘进机空间位姿监测系统研究[J]. 煤炭科学技术,2018,46(12):41-47.

    MAO Qinghua,ZHANG Xuhui,MA Hongwei,et al. Study on spatial position and posture monitoring system of boom-type roadheader based on multi sensor information[J]. Coal Science and Technology,2018,46(12):41-47.

    [10] 杜雨馨,刘停,童敏明,等. 基于机器视觉的悬臂式掘进机机身位姿检测系统[J]. 煤炭学报,2016,41(11):2897-2906.

    DU Yuxin,LIU Ting,TONG Minming,et al. Pose measurement system of boom-type roadheader based on machine vision[J]. Journal of China Coal Society,2016,41(11):2897-2906.

    [11] 马宏伟,王世斌,毛清华,等. 煤矿巷道智能掘进关键共性技术[J]. 煤炭学报,2021,46(1):310-320.

    MA Hongwei,WANG Shibin,MAO Qinghua,et al. Key common technology of intelligent heading in coal mine roadway[J]. Journal of China Coal Society,2021,46(1):310-320.

    [12] 杨文娟,张旭辉,马宏伟,等. 悬臂式掘进机机身及截割头位姿视觉测量系统研究[J]. 煤炭科学技术,2019,47(6):50-57.

    YANG Wenjuan,ZHANG Xuhui,MA Hongwei,et al. Research on position and posture measurement system of body and cutting head for boom-type roadheader based on machine vision[J]. Coal Science and Technology,2019,47(6):50-57.

    [13] 张旭辉,赵建勋,杨文娟,等. 悬臂式掘进机视觉导航与定向掘进控制技术[J]. 煤炭学报,2021,46(7):2186-2196.

    ZHANG Xuhui,ZHAO Jianxun,YANG Wenjuan,et al. Vision-based navigation and directional heading control technologies of boom-type roadheader[J]. Journal of China Coal Society,2021,46(7):2186-2196.

    [14] 刘伟华. 基于机器视觉的煤尘在线检测系统关键技术研究[D]. 济南: 山东大学, 2011.

    LIU Weihua. Research on key technologies in on-line system for coal dust partical detection based on machine vision[D]. Jinan: Shandong University, 2011.

    [15] 纪大波,方晓,曹廷校,等. 基于图像处理测量露天爆破粉尘量[J]. 工程爆破,2017,23(4):34-38. DOI: 10.3969/j.issn.1006-7051.2017.04.007

    JI Dabo,FANG Xiao,CAO Tingxiao,et al. Measuring dust amount of open-pit blasting based on image processing[J]. Engineering Blasting,2017,23(4):34-38. DOI: 10.3969/j.issn.1006-7051.2017.04.007

    [16] 闵武国. CCD成像电子学系统自动曝光和自动增益研究[D]. 大连: 大连海事大学, 2010.

    MIN Wuguo. The study of auto-exposure and auto-gain on CCD imaging electronics system[D]. Dalian: Dalian Maritime University, 2010.

    [17] 刘志博,朱志鹏,何超,等. 微纳级示踪粒子图像灰度与粒径量化关系研究[J]. 光学学报,2020,40(8):80-86.

    LIU Zhibo,ZHU Zhipeng,HE Chao,et al. Research on quantitative relationship between image gray value and particle diameter of micro-nano-scale tracer particle[J]. Acta Optica Sinica,2020,40(8):80-86.

图(5)  /  表(5)
计量
  • 文章访问数:  1069
  • HTML全文浏览量:  93
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29
  • 修回日期:  2022-05-07
  • 网络出版日期:  2022-05-18
  • 刊出日期:  2022-05-26

目录

    /

    返回文章
    返回