基于超声波全断面测风的矿井风网实时解算方法

宋涛, 王建文, 吴奉亮, 张国群, 陈菲, 冯雄, 李龙清

宋涛,王建文,吴奉亮,等. 基于超声波全断面测风的矿井风网实时解算方法[J]. 工矿自动化,2022,48(4):114-120, 141. DOI: 10.13272/j.issn.1671-251x.2021090073
引用本文: 宋涛,王建文,吴奉亮,等. 基于超声波全断面测风的矿井风网实时解算方法[J]. 工矿自动化,2022,48(4):114-120, 141. DOI: 10.13272/j.issn.1671-251x.2021090073
SONG Tao, WANG Jianwen, WU Fengliang, et al. Real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement[J]. Journal of Mine Automation,2022,48(4):114-120, 141. DOI: 10.13272/j.issn.1671-251x.2021090073
Citation: SONG Tao, WANG Jianwen, WU Fengliang, et al. Real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement[J]. Journal of Mine Automation,2022,48(4):114-120, 141. DOI: 10.13272/j.issn.1671-251x.2021090073

基于超声波全断面测风的矿井风网实时解算方法

基金项目: 国家自然科学基金项目(51974232)。
详细信息
    作者简介:

    宋涛(1988-),男,河南西华人,工程师,硕士,主要从事矿井通风与安全方面的研究工作,E-mail:1345465537@qq.com

    通讯作者:

    吴奉亮(1977-),男,四川新都人,教授,博士,主要从事矿井通风与安全方面的教学与研究工作,E-mail:wufl@xust.edu.cn

  • 中图分类号: TD722

Real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement

  • 摘要: 煤矿井下风流时刻在变化,矿井通风网络解算是一种静态解算方法,无法实时解算动态风流,需要用风速传感器获取动态风流数据。但目前风速传感器稳定性差、覆盖不全面。针对上述问题,提出了一种基于超声波全断面测风的矿井风网实时解算方法。利用超声波在两点间顺风、逆风传播的时间差实现巷道全断面测风,风速测定结果与声速无关,不受声速、温湿度和气压等参数影响,而且避免了传统风速传感器的风道易受矿尘堵塞的难题,测风装置的分辨率达0.03 m/s。通过不断采集主要通风机风量、风压实时工况和部分井巷实时风量解算风网,利用固定风量法将监测风量融入通风网络中,解算得到全风网实时风量,采用拉格朗日乘数法实时修正解算风量与风阻,以解决冗余风量监测分支引起的节点风量不平衡、风阻波动产生的回路风压不平衡问题。通过算例验证了该实时解算方法的解算结果与监测值高度吻合,同时又严格遵循回路风压平衡与节点流量平衡的约束。对柠条塔煤矿含1 319条分支、945个节点的风网进行实时解算,1次解算仅用时0.9 s,解算迭代收敛次数约为105,且解算结果随时间不断更新,验证了该实时解算方法的可行性。
    Abstract: The wind flow in underground coal mine is changing all the time. The coal mine ventilation network solution is a static calculation method, which can not solve the dynamic wind flow in real time, and requires wind speed sensor to obtain the dynamic wind flow data. However, the current wind speed sensor has poor stability and incomplete coverage. In order to solve the above problems, a real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement is proposed. The time difference between downwind and upwind of ultrasonic propagation between two points is used to measure the wind speed of the whole section of the roadway. The wind speed measurement result is independent of the sound speed and is not affected by the parameters such as the sound speed, temperature and humidity and air pressure. The problem that the air duct of the traditional wind speed sensor is easily blocked by mine dust is avoided. The resolution of the wind measuring device reaches 0.03 m /s. By continuously collecting the real-time working conditions of air volume and air pressure of main fans and the real-time air volume of some shafts and roadways, the ventilation network is calculated. And the fixed air volume method is used to integrate the monitored air volume into the ventilation network, and the real-time air volume of the whole ventilation network can be obtained through calculation. The Lagrangian multiplier method is used to correct and calculate the air volume and wind resistance in real time, so as to solve the problems of unbalanced air volume of nodes caused by redundant air volume monitoring branches and unbalanced air pressure of loop caused by fluctuation of the wind resistance. It is verified by an example that the calculation results of the real-time calculation method are highly consistent with the monitoring values. At the same time, the results strictly follow the constraints of the loop air pressure balance and the node flow balance. The real-time calculation of the ventilation network with 1 319 branches and 945 nodes in Ningtiaota Coal Mine is carried out. The time for one calculation is only 0.9 s, the number of iteration convergence is about 105, and the calculation results are continuously updated with time. The results verify the feasibility of the real-time calculation method.
  • 图  1   超声波测风原理

    Figure  1.   Wind measurement principle of ultrasonic

    图  2   超声波全断面测风装置安装实物

    Figure  2.   Installation material object of ultrasonic full-section wind speed measuring device

    图  3   简化的矿井通风网络

    Figure  3.   Simplified mine ventilation network

    图  4   风量实时测值显示界面

    Figure  4.   Display interface of real-time values of air volume

    图  5   风速监测值统计

    Figure  5.   Statistical chart of wind speed monitoring values

    图  6   人工测风与超声波测风对比

    Figure  6.   Comparison between manual wind speed measurement values and ultrasonic wind speed measurement values

    图  7   基于WebGL的风网实时解算前端显示界面

    Figure  7.   The front-end display interface of real-time calculation results of mine ventilation network based on WebGl technology

    表  1   图3算例风网实时解算结果

    Table  1   Real-time calculation results of the example ventilation network of figure 3

    分支号R* 元素/
    (${\rm{N}} \cdot {{\rm{s}}^{2}} \cdot {{\rm{M}}^{-8}}$)
    QM元素/
    (${\rm{m} }^{3}\cdot {\rm{s} }^{-1}$)
    Q0元素/
    (${\rm{m}}^{3}\cdot {\rm{s}}^{-1}$)
    Q1元素/
    (${\rm{m}}^{3}\cdot {\rm{s}}^{-1}$)
    10.007583.088.087.0
    20.380047.547.0
    30.500040.540.0
    40.050027.827.3
    50.200075.374.3
    60.005785.088.087.0
    77.076912.712.712.7
    8087.088.087.0
    下载: 导出CSV

    表  2   图3算例风网实时解算修正结果

    Table  2   Real-time corrected calculation results of the example ventilation network of figure 3

    分支号Q*元素/
    (m3·s−1
    Q元素/
    (m3·s−1
    R元素/
    (N·s2·m−8
    |QQ0|元素/
    (m3·s−1
    |RR*|/R
    元素/%
    183.085.803550.0185822.2059.6
    247.046.19070.4499751.3115.6
    340.039.612860.5897560.8915.2
    427.327.155690.0469530.646.5
    574.373.346390.2039451.951.9
    685.085.803550.0141232.2059.6
    712.712.457177.2933180.243.0
    887.085.8035502.20
    下载: 导出CSV
  • [1] 周福宝,魏连江,夏同强,等. 矿井智能通风原理、关键技术及其初步实现[J]. 煤炭学报,2020,45(6):2225-2235.

    ZHOU Fubao,WEI Lianjiang,XIA Tongqiang,et al. Principle,key technology and preliminary realization of mine intelligent ventilation[J]. Journal of China Coal Society,2020,45(6):2225-2235.

    [2] 张庆华,姚亚虎,赵吉玉. 我国矿井通风技术现状及智能化发展展望[J]. 煤炭科学技术,2020,48(2):97-103.

    ZHANG Qinghua,YAO Yahu,ZHAO Jiyu. Status of mine ventilation technology in China and prospects for intelligent development[J]. Coal Science and Technology,2020,48(2):97-103.

    [3] 吴奉亮,高佳南,常心坦,等. 矿井风网雅可比矩阵对称特性及并行求解模型[J]. 煤炭学报,2016,41(6):1454-1459.

    WU Fengliang,GAO Jianan,CHANG Xintan,et al. Symmetry property of Jacobian matrix of mine ventilation network and its parallel calculation model[J]. Journal of China Coal Society,2016,41(6):1454-1459.

    [4] 倪景峰. 矿井通风仿真系统可视化研究 [D]. 阜新: 辽宁工程技术大学, 2004.

    NI Jingfeng. The study on visualization of mine ventilation simulation [D]. Fuxin: Liaoning Technical University, 2004.

    [5] 朱华新,魏连江,张飞,等. 矿井通风可视化仿真系统的改进研究[J]. 采矿与安全工程学报,2009,26(3):327-331. DOI: 10.3969/j.issn.1673-3363.2009.03.015

    ZHU Huaxin,WEI Lianjiang,ZHANG Fei,et al. Improvement of the visual simulation of mine ventilation system[J]. Journal of Mining & Safety Engineering,2009,26(3):327-331. DOI: 10.3969/j.issn.1673-3363.2009.03.015

    [6] 卢辉,袁树杰,马瑞峰,等. 基于Ventsim的南山煤矿孤岛工作面均压通风方案研究[J]. 中国安全生产科学技术,2020,16(8):125-130.

    LU Hui,YUAN Shujie,MA Ruifeng,et al. Study on scheme of pressure equalizing ventilation in isolated island working face of Nanshan Coal Mine based on Ventsim[J]. Journal of Safety Science and Technology,2020,16(8):125-130.

    [7]

    DZIURZYŃSKI W,KRACH A,PAŁKA T. A reliable method of completing and compensating the results of measurements of flow parameters in a network of headings[J]. Archives of Mining Sciences,2015,60(1):3-24. DOI: 10.1515/amsc-2015-0001

    [8] 刘鹏,邹德东. 恶劣环境下矿用压差风速传感器关键技术[J]. 煤矿安全,2021,52(7):89-93.

    LIU Peng,ZOU Dedong. Key technology of mine differential pressure and wind speed sensor used in harsh environment[J]. Safety in Coal Mines,2021,52(7):89-93.

    [9] 张巍,李雨成,张欢,等. 面向通风智能化的风速传感器结构化数据降噪方法对比[J]. 中国安全生产科学技术,2021,17(8):70-75.

    ZHANG Wei,LI Yucheng,ZHANG Huan,et al. Comparison of structured data noise reduction methods for airflow speed sensor of intelligent ventilation[J]. Journal of Safety Science and Technology,2021,17(8):70-75.

    [10] 王恩,张浪,李伟,等. 多点移动式测风装置及关键技术[J]. 煤矿安全,2016,47(6):97-99,103.

    WANG En,ZHANG Lang,LI Wei,et al. Key technology of multipoint mobile wind-measured device[J]. Safety in Coal Mines,2016,47(6):97-99,103.

    [11] 李秉芮,王伟,陈凤梅,等. 基于有向通路矩阵法的风速传感器最优布置[J]. 工矿自动化,2021,47(5):52-57.

    LI Bingrui,WANG Wei,CHEN Fengmei,et al. Optimal arrangement of wind speed sensor based on directed path matrix method[J]. Industry and Mine Automation,2021,47(5):52-57.

    [12] 蔡峰,袁媛,刘泽功,等. 超声波在煤矿井下环境中的传播与衰减特性[J]. 中国矿业大学学报,2021,50(4):685-690.

    CAI Feng,YUAN Yuan,LIU Zegong,et al. Propagation and attenuation characteristics of ultrasonic in underground environment of coal mine[J]. Journal of China University of Mining & Technology,2021,50(4):685-690.

    [13] 李伟,霍永金,张浪,等. 矿井通风实时网络解算技术研究[J]. 中国矿业,2016,25(3):167-170. DOI: 10.3969/j.issn.1004-4051.2016.03.041

    LI Wei,HUO Yongjin,ZHANG Lang,et al. Research on ventilation real time network solution[J]. China Mining Magazine,2016,25(3):167-170. DOI: 10.3969/j.issn.1004-4051.2016.03.041

    [14] 谈国文. 复杂矿井通风网络可视化动态解算及预警技术[J]. 工矿自动化,2020,46(2):6-11.

    TAN Guowen. Visualized dynamic solution and early warning technology for ventilation network of complex mine[J]. Industry and Mine Automation,2020,46(2):6-11.

    [15] 谭国运. 矿井通风网络分析及电算方法 [M]. 北京: 煤炭工业出版社, 1991.

    TAN Guoyun. Mine ventilation network analysis and computer calculation method [M]. Beijing: China Coal Industry Publishing House, 1991.

  • 期刊类型引用(2)

    1. 易恩兵. 不同循环加卸载路径含瓦斯煤体变形—渗流特征. 能源与环保. 2025(02): 1-8 . 百度学术
    2. 郭军,王磊,杜文涛,刘荫,陈昌明,张科峰,李岱霖. 通风方式对沿空留巷采空区煤自燃影响规律研究. 工矿自动化. 2024(11): 142-151 . 本站查看

    其他类型引用(2)

图(7)  /  表(2)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  91
  • PDF下载量:  67
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-09-21
  • 修回日期:  2022-01-24
  • 网络出版日期:  2022-03-04
  • 刊出日期:  2022-04-24

目录

    /

    返回文章
    返回