动静载下深井临空巷道冲击破坏分析及防治

唐杰兵, 鞠文君, 陈法兵

唐杰兵, 鞠文君, 陈法兵. 动静载下深井临空巷道冲击破坏分析及防治[J]. 工矿自动化, 2021, 47(11): 88-94. DOI: 10.13272/j.issn.1671-251x.2021030071
引用本文: 唐杰兵, 鞠文君, 陈法兵. 动静载下深井临空巷道冲击破坏分析及防治[J]. 工矿自动化, 2021, 47(11): 88-94. DOI: 10.13272/j.issn.1671-251x.2021030071
TANG Jiebing, JU Wenjun, CHEN Fabing. Analysis and prevention of impact damage in deep goaf roadway under dynamic and static load[J]. Journal of Mine Automation, 2021, 47(11): 88-94. DOI: 10.13272/j.issn.1671-251x.2021030071
Citation: TANG Jiebing, JU Wenjun, CHEN Fabing. Analysis and prevention of impact damage in deep goaf roadway under dynamic and static load[J]. Journal of Mine Automation, 2021, 47(11): 88-94. DOI: 10.13272/j.issn.1671-251x.2021030071

动静载下深井临空巷道冲击破坏分析及防治

基金项目: 

天地科技股份有限公司科技创新创业资金专项项目(2019-TD-2-CXY006,2019-TD-2-CXY004)。

详细信息
    作者简介:

    唐杰兵(1983-),男,河南固始人,助理工程师,博士研究生,主要从事煤矿冲击地压预警及防治研究工作,E-mail:112747965@qq.com。

  • 中图分类号: TD324

Analysis and prevention of impact damage in deep goaf roadway under dynamic and static load

  • 摘要: 现有针对临空巷道冲击地压的研究主要集中在静载致灾方面,对静载基础上的动载叠加致灾机制研究不够,在巷道围岩动载应力波响应方面未能将巷道破坏方式同应力波扰动及其力学效果相联系。针对该问题,以内蒙古鄂尔多斯矿区某矿3-1103工作面临空巷道为研究对象,分析了临空巷道冲击破坏特征和冲击地压发生的动静载荷源:临空巷道处于采空区侧“F”型覆岩结构下,静载荷源为侧向集中支承应力和工作面回采超前采动集中支承应力的叠加应力场;动载荷源为基本顶的初次来压、周期来压和见方破断形成的近场矿震以及远场矿震释放能量,在冲击性顶板岩层下动静载组合效应极易诱发高地应力下应力场差异且应力集中的巷道产生冲击灾害。采用FLAC3D数值模拟方法分析了临空巷道动静载荷源下冲击巷道所处的应力状态以及矿震应力波致灾影响作用,并与现场冲击破坏特征进行对比验证分析。数值模拟结果与现场破坏特征具有较强一致性,在采空区压实过程中,最大垂直集中应力由煤柱上方转移至巷道回采帮侧,锚杆轴力呈现不对称分布状态;动载过程中,巷道围岩主应力差重复加卸载,迎波侧应力波最大质点振动速度(PPV)值大于背波侧,围岩浅部应力波反射叠加,PPV值大小与围岩浅部动载后最大位移量一致;临空巷道围岩在动静载作用过程中形成了巷道回采帮侧与煤柱帮应力场差异以及动载应力场差异。根据动静载荷下临空巷道破坏特征及其数值模拟验证分析结果制定了静载荷卸压降载、动载荷减震消能的分源防治措施,即顶板水压致裂、顶底板爆破卸压、巷帮大直径钻孔卸压以及巷道围岩加固等措施,以达到防止厚硬顶板弹性能积聚、消弱应力波幅值以及改善围岩受力环境的目的。采取卸压措施后,实测微震以小能级、多频次的形式释放能量,微震总能量比卸压前降低了49.2%,103 J以下微震小能量事件占比由卸压前的75%升高到89%,现场巷道围岩静载降低,动静载叠加时未出现应力突变,证明了冲击防治措施的有效性。
    Abstract: The existing research on rock bursts in goaf roadway mainly focuses on the static load caused disaster.However, there is few research on the dynamic load superimposed disaster mechanisms based on static load.In terms of the dynamic load stress wave response of the surrounding rock of the roadway, the damage mode of the roadway is not related with the stress wave disturbance and its mechanical effects.In order to solve this problem, taking 3-1103 working face in Ordos mining area, Inner Mongolia as the research object, the study analyzes the impact damage characteristics of the goaf roadway and the dynamic and static load sources of the rock burst.The goaf roadway is under the 'F' type overburden rock structure on the side of the goaf, and the source of static load is the superimposed stress field of the lateral concentrated support stress and the advanced mining concentrated support stress of the working face.The source of dynamic load is the initial pressure of the basic roof, periodic pressure and the near-field mine earthquake formed by the square area break and the far-field mine seismic release energy.The combined effect of dynamic and static load under the impact roof rock layer can easily induce impact disaster in roadways with different stress fields under high ground stress and stress concentration.The FLAC3D numerical simulation method is used to analyze the stress state of the impact roadway under the dynamic and static load sources of the goaf roadway and the impact of the stress wave of the mine earthquake, and to verify and analyze the field impact damage characteristics in comparison.The numerical simulation results have a strong consistency with the field damage characteristics.During the goaf compaction process, the maximum vertical concentrated stress is transferred from the coal pillar to the side of the roadway side, and the bolt axial force shows an asymmetrical distribution state.During the dynamic load process, the principle stress difference of the roadway surrounding rock is repeatedly loaded and unloaded, the peak particle velocity(PPV)value of the stress wave on the front wave side is larger than that on the back wave side.The shallow stress wave of surrounding rock is reflected and superimposed, the PPV value is consistent with the maximum displacement of the shallow part of the surrounding rock after dynamic load.The surrounding rock of the goaf roadway forms the difference in stress field between the side of the roadway and the coal pillar side as well as the difference in dynamic load stress field in the process of dynamic and static load.According to the damage characteristics of goaf roadway under dynamic and static load and the results of its numerical simulation and validation analysis, the separate source prevention and control measures of static load decompression and load reduction, dynamic load earthquake reduction and energy dissipation are formulated.The measures are roof hydraulic fracturing, roof and floor blasting decompression, decompression of large-diameter boreholes of roadway and reinforcement of roadway surrounding rock.These measures are used to prevent the accumulation of elastic energy of thick and hard roof, weaken the amplitude of stress wave, and improve the surrounding rock stress environment.After taking pressure relief measures, the measured microseismic energy is released in the form of small energy level and multiple frequency.The total microseismic energy is reduced by 49.2% compared with that before pressure relief, the proportion of microseismic small energy events below 103 J increases from 75% before pressure relief to 89%, the static load of the field roadway surrounding rock is reduced, and there was no sudden change of stress when dynamic and static load are superimposed, which has proved the effectiveness of impact prevention and control measures.
  • [1] 马念杰,张文龙,李军,等.冲击地压机理要素分析与评价[J].矿业科学学报,2021,6(6):651-658.

    MA Nianjie,ZHANG Wenlong,LI Jun,et al.Analysis and evaluation of essential factors for rock burst mechanism[J].Journal of Mining Science and Technology,2021,6(6):651-658.

    [2] 宫凤强,潘俊锋,江权.岩爆和冲击地压的差异解析及深部工程地质灾害关键机理问题[J].工程地质学报,2021,29(4):933-961.

    GONG Fengqiang,PAN Junfeng,JIANG Quan.The difference analysis of rock burst and coal burst and key mechanisms of deep engineering geological hazards[J].Jouranl of Engineering Geology,2021,29(4):933-961.

    [3] 解嘉豪.缓倾斜煤层工作面临空侧巷道围岩动静载特征及冲击规律[D].徐州:中国矿业大学,2018.

    XIE Jiahao.Static and dynamic load characteristics and rockburst rules of working face gob side roadway in gently inclined coal seam[D].Xuzhou:China University of Mining and Technology,2018.

    [4] 吴拥政,付玉凯,何杰,等.深部冲击地压巷道“卸压-支护-防护”协同防控原理与技术[J].煤炭学报,2021,46(1):132-144.

    WU Yongzheng,FU Yukai,HE Jie,et al.Principle and technology of "pressure relief-support-protection" collaborative prevention and control in deep rock burst roadway[J].Journal of China Coal Society,2021,46(1):132-144.

    [5] 齐庆新,赵善坤,李海涛,等.我国煤矿冲击地压防治的几个关键问题[J].煤矿安全,2020,51(10):135-143.

    QI Qingxin,ZHAO Shankun,LI Haitao,et al.Several key problems of coal bump prevention and control in China's coal mines[J].Safety in Coal Mines,2020,51(10):135-143.

    [6] 张建民,李全生,张勇,等.煤炭深部开采界定及采动响应分析[J].煤炭学报,2019,44(5):1314-1325.

    ZHANG Jianmin,LI Quansheng,ZHANG Yong,et al.Definition of deep coal mining and response analysis[J].Journal of China Coal Society,2019,44(5):1314-1325.

    [7] 齐庆新,李一哲,赵善坤,等.我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J].煤炭科学技术,2019,47(9):1-40.

    QI Qingxin,LI Yizhe,ZHAO Shankun,et al.Seventy years development of coal mine rockburst in China:establishment and consideration of theory and technology system[J].Coal Science and Technology,2019,47(9):1-40.

    [8] 王博,姜福兴,朱斯陶,等.陕蒙接壤深部矿区区段煤柱诱冲机理及其防治[J].采矿与安全工程学报,2020,37(3):505-513.

    WANG Bo,JIANG Fuxing,ZHU Sitao,et al.Mechanism and prevention of rock burst induced by segment pillars in the deep mining areas of Shaanxi-Inner Mongolia adjacent regions[J].Journal of Mining & Safety Engineering,2020,37(3):505-513.

    [9] 朱斯陶,王博,姜福兴,等.基于冲击地压-矿震协同控制的隔离煤柱合理宽度研究[J].煤炭科学技术,2021,49(6):102-110.

    ZHU Sitao,WANG Bo,JIANG Fuxing,et al.Study on reasonable width of isolated coal pillar based on rock burst-mine earthquake coordinated control[J].Coal Science and Technology,2021,49(6):102-110.

    [10] 韩刚,窦林名,张寅,等.沿空巷道动力显现影响机制与防治技术研究[J].采矿与安全工程学报,2021,38(4):730-738.

    HAN Gang,DOU Linming,ZHANG Yin,et al.Influence mechanism and prevention technology of dynamic manifestation of roadway along goaf[J].Journal of Mining & Safety Engineering,2021,38(4):730-738.

    [11] 赵毅鑫,周金龙,刘文岗.新街矿区深部开采邻空巷道受载特征及冲击失稳规律分析[J].煤炭学报,2020,45(5):1595-1606.

    ZHAO Yixin,ZHOU Jinlong,LIU Wengang.Characteristics of ground pressure and mechanism of coal burst in the gob side roadway at Xinjie deep mining area[J].Journal of China Coal Society,2020,45(5):1595-1606.

    [12]

    DOU Linming,HE Xueqiu,SHI Haoyu,et al.Spatial structure evolution of overlying strata and inducing mechanism of rockburst in coal mine[J].Transactions of Nonferrous Metals Society of China,2014,24(4):1255-1261.

    [13] 姜福兴,刘懿,杨伟利,等.郓城煤矿冲击地压与载荷三带关系研究[J].采矿与安全工程学报,2017,34(3):405-410. JIANG Fuxing,LIU Yi,YANG Weili.Relationship between rock burst and the three zone structure loading model in Yuncheng Coal Mine[J].Journal of Mining & Safety Engineering,2017,34(3):405-406.
    [14]

    YADAV A,BEHERA B,SAHOO S,et al.Numerical analysis of the gob stress distribution using a modified elastic model as the gob constitutive model[J].Journal of the Institution of Engineers:Series D,2020(4):1-13.

    [15]

    POTVIN Y,WESSELOO J.Towards an understanding of dynamic demand on ground support[J].Journal of the Southern African Institute of Mining and Metallurgy,2013,113(12):913-922.

  • 期刊类型引用(7)

    1. 范思涵,杨维,田子建. 井下环状金属结构等效多圈小环天线接收电磁波能量安全性分析. 中国矿业. 2024(02): 182-189 . 百度学术
    2. 郭波超,田子建,侯明硕,石洋名,杨维. 煤矿井下爆炸性环境下电磁波热效应的安全性研究. 工矿自动化. 2024(03): 108-113 . 本站查看
    3. 田子建,侯明硕,孙静,杜欣欣,石洋名. 煤矿井下金属结构等效储能模型耦合电磁波能量安全性分析. 工矿自动化. 2024(07): 136-146 . 本站查看
    4. 范思涵,杨维,田子建. 井下柱状金属结构接收电磁波能量安全性分析. 煤炭科学技术. 2024(S2): 426-434 . 百度学术
    5. 田子建,降滉舟,常琳,刘斌,王文清. 半波振子结构在井下5G辐射场中的安全性分析. 工矿自动化. 2023(06): 159-167 . 本站查看
    6. 董红涛,田子建,侯明硕,赵晖,卫若茜. 金属振子结构在矿井5G辐射场中的安全功率分析. 工矿自动化. 2023(12): 108-113 . 本站查看
    7. 范思涵,杨维,刘俊波. 井下金属结构近场耦合大环发射天线电磁波能量安全性分析. 工矿自动化. 2022(06): 118-127 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  166
  • HTML全文浏览量:  18
  • PDF下载量:  15
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-03-21
  • 修回日期:  2021-08-28
  • 刊出日期:  2021-11-19

目录

    /

    返回文章
    返回