基于机器视觉的锚杆异常快速检测方法

Rapid detection method of bolt abnormality based on machine visio

  • 摘要: 现有的锚杆异常人工检测方法只能对单根锚杆进行抽检,无法全面检查锚杆异常情况,且效率较低。锚杆有异常时,杆体露出段往往出现长度或角度变化,甚至发生脱落。根据锚杆出现异常时露出段长度、角度会发生变化的特点,以巷道巡检机器人为平台,基于机器视觉技术设计了一种由锚杆图像匹配与提取、锚杆特征检测构成的非接触式锚杆异常快速检测方法。在锚杆图像匹配与提取阶段,采用感知哈希算法进行采集图像与原始图像匹配,采用直方图均衡化实现图像增强,采用YOLOv3算法定位并提取锚杆区域;在锚杆特征检测阶段,采用双边滤波与Canny边缘检测算法提取锚杆图像边缘信息,采用直线段检测算法提取锚杆图像直线段,结合锚杆轮廓可视为一组平行线的特征,实现锚杆长度、角度特征提取,并与原始图像锚杆特征进行对比,实现异常检测。通过在实验室制作数据集对锚杆异常快速检测方法进行实验,结果表明该方法可快速、准确地检测出锚杆异常。

     

    Abstract: The existing manual detection method of bolt abnormality can only perform random inspection on a single bolt, cannot check the bolt abnormality comprehensively, and has low efficiency. When the bolt is abnormal, the exposed section of the bolt often changes in length or angle, or even falls off. According to the characteristics that the length and angle of the exposed section change when the bolt is abnormal, and taking the roadway inspection robot as a platform, a non-contact bolt abnormality detection method consisting of bolt image matching and extraction and bolt characteristic detection is designed based on machine vision technology. In the bolt image matching and extraction stage, perceptual hash algorithm is used to match the collected image with the original image, histogram equalization is used to achieve image enhancement, and YOLOv3 algorithm is used to locate and extract the bolt area. In the bolt characteristic detection stage, bilateral filtering and Canny edge detection algorithm are used to extract bolt image edge information, and line segment detection algorithm is used to extract straight line segments of bolt images. Combined with the characteristic that bolt contour can be regarded as a group of parallel lines, the method can achieve the length and angle characteristic extraction, and compare with the original image bolt characteristics to realize abnormality detection. The laboratory-made data set is used to conduct experiments on the rapid bolt abnormality detection method, and the results shows that the method can detect bolt abnormality quickly and accurately.

     

/

返回文章
返回