一种矿用相控开关短路电流过零点预测算法

A zero-crossing point prediction algorithm of short-circuit current for mine-used phase-controlled switching

  • 摘要: 现有短路电流过零点预测算法存在计算复杂、误差大等问题。针对煤矿供电系统三相短路故障,提出了一种矿用相控开关短路电流过零点预测算法。该算法利用三相短路故障发生后1个基波周期内短路电流采样数据,通过累加和的方法计算短路电流的直流分量,可减小计算量、消除谐波干扰;将采样数据与直流分量相减,得到短路电流的交流分量;利用交流分量周期性的特点,可预测1个基波周期后任意采样时刻的交流分量;将1个基波周期后任意采样时刻的直流分量与交流分量相加,即可重构出任意采样时刻的短路电流,从而预测短路电流过零点。仿真和实验结果验证了该算法的准确性。

     

    Abstract: The existing zero-crossing point prediction algorithms of short-circuit current have some problems, such as complex calculation and big error. For three-phase short-circuit fault of coal mine power supply system, a zero-crossing point prediction algorithm of short-circuit current for mine-used phase-controlled switching was proposed. In the algorithm, DC component of short-circuit current is calculated by summing short-circuit current sampling data in one fundamental wave period after occurrence of three-phase short-circuit fault, which can reduce calculation amount and eliminate harmonic interference. AC component of short-circuit current is obtained by subtracting the DC component from the sampling data. Using periodicity of the AC component, the AC component at any sampling time after one fundamental wave period can be predicted. By adding the DC and AC components at any sampling time after one fundamental wave period, short-circuit current at any sampling time can be reconstructed to predict zero-crossing point of short-circuit current. The simulation and experimental results verify accuracy of the algorithm.

     

/

返回文章
返回