Design of hydraulic coal unloading device of belt conveyor in underground coal mine
-
摘要: 以纳林庙煤矿二号井6-2116综采工作面为工程背景,针对回收煤柱工作面充填空巷用煤量大且运煤困难的问题,设计了一种煤矿井下带式输送机液压卸煤装置。该装置由支撑装置、改向装置和液压系统组成,安装在主运巷道与辅回撤通道交叉口位置;利用液压泵站为动力,通过支撑装置和改向装置相互配合将煤炭从带式输送机上卸下,再经转载运输至用煤空巷。通过该卸煤装置,原煤不需要升井后再用无轨胶轮车运输到井下,提高了经济效益和充填效率,降低了安全风险。现场工业性试验结果表明,采煤机割煤速度为0.8 m/min、刮板输送机速度为0.4 m/s、转载机速度等级为低速、带式输送机速度为1.0 m/s、改向油缸和支撑油缸伸出长度为0.7 m时,卸煤装置可实现连续卸煤,满足试验工作面充填用煤需要,保证了回收煤柱工作面的正常推进。Abstract: Taking the 6-2116 fully mechanized coal mining face of No.2 shaft of Nalinmiao Coal Mine as the engineering background, in view of problems of large coal consumption and difficult coal transport in abandoned roadway backfilling on coal pillar recovery working faces, a hydraulic coal unloading device of belt conveyor in underground coal mine was designed. The device is composed of support device, redirection device and hydraulic system. It is installed at intersection of main transportation roadway and auxiliary retracement channel. Using hydraulic pump station as power, the coal is unloaded from the belt conveyor by the support device and the redirection device cooperatively,and then the coal is transported to the abandoned roadway. Through the coal unloading device, the raw coal does not need to be lifted into ground and then transported to underground by trackless rubber truck, which improves economic benefit and filling efficiency, and reduces safety risk. Field industrial test results show that when the shearing speed of shearer is 0.8 m/min, the speed of scraper conveyor is 0.4 m/s, the speed level of transfer machine is low, the speed of belt conveyor is 1.0 m/s, and the extension length of support cylinder and redirecting cylinder is 0.7 m, the coal unloading device can realize continuous coal unloading, which meets needs of coal backfilling for the test working face and ensures normal advancement of the coal pillar recovery working face.
-
-
期刊类型引用(16)
1. 程刚,陈杰,潘泽烨,魏溢凡,陈森森. 基于水传热和红外热成像的煤矸识别方法. 工矿自动化. 2024(01): 66-71+137 . 本站查看
2. 李嘉豪,司垒,王忠宾,魏东,顾进恒. 综放工作面煤矸识别技术及其应用. 仪器仪表学报. 2024(01): 1-15 . 百度学术
3. 高琳,于鹏伟,董红娟,梁朝辉,张志远. 基于机器视觉的煤矸石识别方法综述. 科学技术与工程. 2024(26): 11039-11049 . 百度学术
4. 冯永安,韩晓天,刘铁,吕伏. 2020–2021年陕晋冀地区五种破坏类型井下构造煤的深度学习图像数据集. 中国科学数据(中英文网络版). 2024(04): 383-390 . 百度学术
5. 李伟,刘化广. 基于LBP算法的SVM煤矸识别. 黑龙江科技大学学报. 2023(02): 153-158+166 . 百度学术
6. 张光磊,汪海涛,张磊. 基于虚拟现实技术的综放工作面仿真研究. 自动化技术与应用. 2023(06): 62-65+86 . 百度学术
7. 王闰泽,郎利影,席思星. 用于智能煤矸分选机器人的改进型VGG网络煤矸识别模型. 煤炭技术. 2022(01): 237-241 . 百度学术
8. 杨胜利 ,王家臣 ,李明 . 煤矿采场围岩智能控制技术路径与设想. 矿业科学学报. 2022(04): 403-416 . 百度学术
9. 张红,李晨阳. 基于光学图像的煤矸石识别方法综述. 煤炭工程. 2022(07): 159-163 . 百度学术
10. 申利飞,田子建,白林绪. 改进纹理模糊筛选下煤矸石X射线图像处理. 激光与红外. 2022(07): 1090-1097 . 百度学术
11. 司垒,谭超,朱嘉皓,王忠宾,李嘉豪. 基于X射线图像和激光点云的煤矸识别方法. 仪器仪表学报. 2022(09): 193-205 . 百度学术
12. 朱金波,尹建强,杨晨光,周伟,朱宏政,张勇,史苘桧,曾秋予,郭永存,杨科. 矿物组分对智能分选X射线识别规律研究. 洁净煤技术. 2021(01): 202-208 . 百度学术
13. 胡璟皓,高妍,张红娟,靳宝全. 基于深度学习的带式输送机非煤异物识别方法. 工矿自动化. 2021(06): 57-62+90 . 本站查看
14. 尹建强,朱金波,曾秋予,杨晨光,张勇,史苘桧. X射线煤矸识别过程中图像分割精度研究. 选煤技术. 2021(04): 24-29 . 百度学术
15. 杜京义,史志芒,郝乐,陈瑞. 轻量化煤矸目标检测方法研究. 工矿自动化. 2021(11): 119-125 . 本站查看
16. 李黎,熊英,荆瑞俊. 基于支持向量机的煤矸识别研究. 山西电子技术. 2021(06): 85-87 . 百度学术
其他类型引用(9)
计量
- 文章访问数: 76
- HTML全文浏览量: 14
- PDF下载量: 18
- 被引次数: 25