基于双粒子群算法的矿井搜救机器人路径规划

封硕, 谢廷船, 康靖, 李建良

封硕,谢廷船,康靖,等.基于双粒子群算法的矿井搜救机器人路径规划[J].工矿自动化,2020,46(1):65-71.. DOI: 10.13272/j.issn.1671-251x.2019050092
引用本文: 封硕,谢廷船,康靖,等.基于双粒子群算法的矿井搜救机器人路径规划[J].工矿自动化,2020,46(1):65-71.. DOI: 10.13272/j.issn.1671-251x.2019050092
FENG Shuo, XIE Tingchuan, KANG Jing, LI Jianliang. Path planning of mine search and rescue robot based on two-particle swarm optimization algorithm[J]. Journal of Mine Automation, 2020, 46(1): 65-71. DOI: 10.13272/j.issn.1671-251x.2019050092
Citation: FENG Shuo, XIE Tingchuan, KANG Jing, LI Jianliang. Path planning of mine search and rescue robot based on two-particle swarm optimization algorithm[J]. Journal of Mine Automation, 2020, 46(1): 65-71. DOI: 10.13272/j.issn.1671-251x.2019050092

基于双粒子群算法的矿井搜救机器人路径规划

基金项目: 

国家自然科学基金项目(61803038)

陕西省自然科学基金项目(211425180248)

中央高校基本科研业务费专项资金项目(300102258113)

详细信息
  • 中图分类号: TD67

Path planning of mine search and rescue robot based on two-particle swarm optimization algorithm

  • 摘要: 针对在复杂地形中标准的粒子群算法用于矿井搜救机器人路径规划存在迭代速度慢和求解精度低的问题,提出了一种基于双粒子群算法的矿井搜救机器人路径规划方法。首先将障碍物膨胀化处理为规则化多边形,以此建立环境模型,再以改进双粒子群算法作为路径寻优算法,当传感器检测到搜救机器人正前方一定距离内有障碍物时,开始运行双改进粒子群算法:改进学习因子的粒子群算法(CPSO)粒子步长大,适用于相对开阔地带寻找路径,而添加动态速度权重的粒子群算法(PPSO)粒子步长小,擅长在障碍物形状复杂多变地带寻找路径;然后评估2种粒子群算法得到的路径是否符合避障条件,若均符合避障条件,则选取最短路径作为最终路径;最后得到矿井搜救机器人在整个路况模型中的最优行驶路径。仿真结果表明,通过改进学习因子和添加动态速度权重提高了粒子群算法的收敛速度,降低了最优解波动幅度,改进的双粒子群算法能够与路径规划模型有效结合,在复杂路段能够寻找到最优路径,提高了路径规划成功率,缩短了路径长度。
    Abstract: In view of problems of slow iterative speed and low solution accuracy of standard particle swarm optimization algorithm used in the path planning of mine search and rescue robot in complex terrain, a path planning method for mine search and rescue robot based on two-particle swarm optimization algorithm was proposed. Firstly, the obstacles are expanded into regular polygons to build an environment model, and then the improved two-particle swarm optimization algorithm is used as the path optimization algorithm. When the sensor detects obstacles within a certain distance in front of the search and rescue robot, it starts to run the improved two-particle swarm optimization algorithm: particle swarm optimization algorithm with improved learning factor (CPSO) grows in steps, which is suitable for finding paths in relatively open areas, while particle swarm optimization algorithm with dynamic velocity weight (PPSO) has small particle steps, which makes it good at finding paths in complex and variable areas of obstacle shapes. Then the algorithm evaluates the paths obtained by the two particle swarm optimization algorithms whether meet the obstacle avoidance requirements or not. If both meet the obstacle avoidance requirements, the shortest path is selected as the final path. Finally, the optimal driving path of the mine search and rescue robot in the whole road condition model is obtained. The simulation results show that the convergence speed of particle swarm optimization algorithm is improved by improving the learning factor and adding the dynamic velocity weight, and the optimal solution fluctuation range is reduced; the improved two-particle swarm optimization algorithm can be effectively combined with the path planning model, and the optimal path can be found in the complex road section, which improves the success rate of path planning and shortens the path length.
  • 期刊类型引用(15)

    1. 闫鹏宇. 可伸缩皮带运输机故障诊断系统研究. 机械管理开发. 2025(01): 159-160+204 . 百度学术
    2. 郭强. 煤矿带式输送机故障及解决策略探讨. 西部探矿工程. 2024(02): 110-112 . 百度学术
    3. 辛磊,胡敬. 带式输送机传动机构故障定位系统的设计. 工矿自动化. 2024(S1): 122-125+138 . 本站查看
    4. 任未,高贵军,张万里. 带式输送机巡检机器人自发电装置仿真研究. 煤炭技术. 2024(09): 232-236 . 百度学术
    5. 史春鹏. 带式输送机驱动滚筒轴承故障诊断及试验. 机械工程与自动化. 2023(01): 152-153+156 . 百度学术
    6. 吴景红. 煤矿机械故障诊断研究现状及发展趋势. 煤炭工程. 2023(06): 187-192 . 百度学术
    7. 周爱平,曹正远. 煤矿胶带运输监控系统技术现状及智能化方案设计. 工矿自动化. 2023(S2): 13-17 . 本站查看
    8. 周坪,马国庆,周公博,马天兵,李远博. 智能化带式输送机健康监测技术研究综述. 仪器仪表学报. 2023(12): 1-21 . 百度学术
    9. 李新. 神东石圪台煤矿胶带输送机故障诊断方式研究. 陕西煤炭. 2022(03): 102-105 . 百度学术
    10. 孟娜娜,钟鹏程,雷超,江帆,杨龙,李柱江. 基于功能分析的带式输送机自动巡检机器人设计. 煤炭科学技术. 2022(08): 227-235 . 百度学术
    11. 张杰,何义峰,甄泽,李宏儒,康小杰. 井下带式输送机机头地脚螺栓锚固特性研究. 煤炭工程. 2022(10): 161-165 . 百度学术
    12. 梁占泽. 矿用带式输送机巡检机器人驱动系统设计. 工矿自动化. 2021(04): 108-112 . 本站查看
    13. 徐辉,刘丽静,沈科,邹盛. 基于多道线性激光的带式输送机纵向撕裂检测. 工矿自动化. 2021(07): 37-44 . 本站查看
    14. 张晋锋. 矿用带式输送机拉线急停开关故障及处理. 机械管理开发. 2020(11): 319-320 . 百度学术
    15. 黄富涛. 皮带自动纠偏装置在铜冶炼备料车间的应用. 铜业工程. 2020(06): 89-91 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  93
  • HTML全文浏览量:  12
  • PDF下载量:  20
  • 被引次数: 21
出版历程
  • 刊出日期:  2020-01-19

目录

    /

    返回文章
    返回