组合煤岩体动态力学性能及瞬变磁场特征研究

Research on dynamic mechanical properties and transient magnetic field characteristics of composite coal and rock mass

  • 摘要: 煤与瓦斯突出是顶板-煤体-底板综合力学作用的结果,单纯研究煤体或岩体力学特性难以充分揭示煤与瓦斯突出机理。为了揭示组合煤岩体的动态力学特性及瞬变磁场信号特征,采用霍普金森压杆实验系统研究了组合煤岩体的动态力学性能,分析了组合煤岩体动态破坏过程中的瞬变磁场信号特征。实验结果表明,组合煤岩体受到冲击破坏后,岩石破碎块度大,煤体破碎块度较小,强度低的煤体对组合试样具有很好的应力衰减和削波作用,应力波通过组合试样后,应力衰减为原来的1/5;组合煤岩体对应力波的衰减弱化效应主要取决于煤体的微观结构,煤体的微观结构使煤体受到冲击载荷后其塑性变形增强,弹性模量逐渐减小,与组合试样相比,单一试样表现出明显的脆性破坏特征;组合试样的平均应变率、最大应变率、断裂应力极限值和破坏应变与瞬变磁场信号幅值具有一定的相关性,随着组合试样冲击速度、平均应变率、最大应变率和断裂应力极限值的增大,组合试样所产生的磁场信号幅值也逐步增大,破坏应变与瞬变磁场信号幅值呈现出负相关关系,但两者相关性不强,离散性较大。

     

    Abstract: Coal and gas outburst is the comprehensive mechanics result of roof-coal body-floor. It is difficult to fully reveal mechanism of coal and gas outburst by simply studying mechanical characteristics of coal or rock. In order to reveal dynamic mechanical properties and transient magnetic field signal characteristics of composite coal and rock mass, the dynamic mechanical properties of composite coal and rock mass were studied by Hopkinson pressure bar experiment system, and the signal characteristics of transient magnetic field of composite coal and rock mass were analyzed during dynamic failure process. The experiment results show that after composite coal and rock is impacted, the rock fragmentation is large, the coal fragmentation is small, and the coal with low strength has good stress attenuation and wave clipping effect on the composite sample. The stress attenuation decreases to 1/5 of the original after the stress wave passes through the composite sample. The attenuation and weakening effect of the composite coal and rock mass on the stress wave mainly depends on the microstructure of the coal body, and the microstructure of the coal body makes the plastic deformation of coal body increase and elastic modulus decrease gradually after being subjected to impact load. Compared with the composite samples, the single sample shows obvious brittle failure characteristics. The average strain rate, maximum strain rate, fracture stress limit value and failure strain of the composite samples have certain correlation with the amplitude of transient magnetic signals. With increase of the impact speed, average strain rate, maximum strain rate, fracture stress limit value of the composite samples, the amplitude of transient magnetic signals generated by the composite sample increases gradually, and the magnitude of damage strain and the amplitude of transient magnetic signals show a negative correlation, but the correlation between them is not strong and the discrete type is large.

     

/

返回文章
返回