基于SAPSO-BP神经网络的井下自适应定位算法

Underground adaptive positioning algorithm based on SAPSO-BP neural network

  • 摘要: 针对基于传统BP神经网络的井下定位算法存在收敛速度慢、易形成局部极值、在煤矿井下强时变性电磁环境中定位误差大等问题,提出了一种基于模拟退火思想的粒子群优化算法加BP神经网络(SAPSO-BP)的井下自适应定位算法。采用SAPSO算法优化BP神经网络的初始权值和阈值,以加快训练收敛速度,使之到达全局最优;通过安装在井下巷道中的无线校准器采集目标点接收信号强度指示(RSSI)值,采用自适应动态校准方法对RSSI值进行实时校准,以减小强时变性电磁环境对定位精度的影响;最后利用SAPSO-BP神经网络估算出目标点位置坐标。实验结果表明,该算法的定位误差在2 m内的置信概率为77.54%,平均误差为1.53 m,定位性能优于未校准SAPSO-BP神经网络算法、PSO-BP神经网络算法、BP神经网络算法。

     

    Abstract: In view of problems of slow convergence, easy to form local extremum and large positioning error in strong time-varying electromagnetic environment of underground positioning algorithms based on traditional BP neural network, an underground adaptive positioning algorithm based on simulated annealing and particle swarm optimization and BP neural network (SAPSO-BP) was proposed. SAPSO algorithm is used to optimize the initial weight and threshold of BP neural network to accelerate training convergence speed and make it reach the global optimum. The target point RSSI value is collected by wireless calibrator installed in underground roadway and real-time calibrated by adaptive dynamic calibration method, in order to reduce influence of time-varying electromagnetic environment on positioning accuracy. Finally, the SAPSO-BP neural network is used to estimate position coordinates of target point. The experimental results show that confidence probability of positioning error within 2 m of the proposed algorithm is 77.54%, average error is 1.53 m, the positioning performance is better than uncalibrated SAPSO-BP neural network algorithm, PSO-BP neural network algorithm and BP neural network algorithm.

     

/

返回文章
返回