Abstract:
In order to solve problem of failure to realize information sharing and coordinated control among subsystems of coal mine safety production, an architecture of coal mine cyber-physical system was proposed, which was composed of perceptual execution layer, network transmission layer, cognitive processing layer and application control layer. The perceptual execution layer realizes ubiquitous perception and control for human, machine, material and environment through sensing and control node. The network transmission layer not only combines backbone network and sub-network, but also combines wired network and wireless network, so as to realize reliable and efficient information transmission. The cognitive processing layer consists of a large number of distributed computing devices to achieve information fusion and analysis, data mining and big data analysis. The application control layer provides communication interface for users to realize centralized monitoring and coordinated control of each link in coal mine. According to characteristics of the sensing and control node in coal mine cyber-physical system, model of the sensing and control node was established by use of BDI model. Autonomous state, autonomous control and autonomous behavior of the sensing and control node are described by belief, goal and plan. Several goals are generated and allocated according to reasoning based on perceptual event and belief library, then plan is refreshed by current belief and plan library, which causes corresponding behavior is executed and belief and goal are modified.