Analysis method of gas warning results of coal mine safety monitoring and control system
-
摘要: 《煤矿安全监控系统升级改造技术方案》明确提出监控系统应具备瓦斯涌出量预测预警功能,但是没有说明预警结果该如何分析。针对该问题,分析了监控系统瓦斯预警现状和特点,指出目前安全监控系统所涉及的瓦斯预警主要包括瓦斯涌出预警与瓦斯突出预警2个方面,提出利用预警识别率和误报率综合评价瓦斯预警结果的方法。对于瓦斯涌出预警,指出兼顾瓦斯涌出绝对量和瓦斯波动变化态势对预警指标做出必要的权衡,是瓦斯涌出预警必须考虑的重要因素之一。在瓦斯突出预警结果分析中,利用钻屑指标将瓦斯突出危险性划分为安全、威胁和危险3种状态,并按照危险状态阈值的80%设定威胁状态。Abstract: Technology schemes of upgrading of coal mine safety monitoring and control system clearly stated that monitoring and control system should have functions of predicting and warning of gas emission, but it did not explain how to analyze early warning results. In view of this problem, status and characteristics of gas warning of monitoring and control system were analyzed. It was pointed out that the gas warning involved in current safety monitoring and control system mainly includes two aspects: gas emission warning and gas outburst warning. Comprehensive evaluation method of gas warning results using early warning recognition rate and false alarm rate was proposed. For gas emission warning, it was pointed out that taking absolute amount of gas emission and change of gas fluctuations to make the necessary trade-offs for early warning indicators is one of the important factors that must be considered in the warning of gas emission. In analysis of warning results of gas outburst, drill cuttings index was used to classify risk of gas outburst into three states: safety, threat and danger, and the threat state was set according to 80% of the dangerous state threshold.
-
-
期刊类型引用(9)
1. 高翼飞,张晓航,畅明,葛帅帅,陈伟. 基于时空图卷积网络的瓦斯体积分数预警效果研究. 中国安全生产科学技术. 2024(01): 58-64 . 百度学术
2. 张玲,杨超宇. 基于注意力机制的ResNet-LSTM煤矿瓦斯浓度预测模型. 煤炭技术. 2024(08): 208-213 . 百度学术
3. 朱艺轩. 基于机器学习的成都市空气质量预测. 信息记录材料. 2024(07): 160-162 . 百度学术
4. 殷建华,戴冠正,丁宁,辛晓钢,张谦,杜荣华. 基于STL-Informer-BiLSTM-XGB模型的供热负荷预测. 科学技术与工程. 2024(21): 8942-8949 . 百度学术
5. 胡青松,郑硕,李世银,孙彦景. 基于改进TCN-TimeGAN的矿井瓦斯浓度智能预测方法. 煤炭科学技术. 2024(S2): 321-330 . 百度学术
6. 李洪晨,张志强. 全国国民图书阅读率会超过60%吗?——基于ARIMA模型的全国国民阅读调查预测研究. 图书情报工作. 2023(09): 72-80 . 百度学术
7. 金秀章,陈佳政,李阳峰. 基于ARIMA-OSELM的火电厂SCR入口NO_x浓度预测建模研究. 计量学报. 2023(09): 1458-1466 . 百度学术
8. 曹梅,杨超宇. 基于小波的CNN-LSTM-Attention瓦斯预测模型研究. 中国安全生产科学技术. 2023(09): 69-75 . 百度学术
9. 曹梅,杨超宇. 基于双向长短期记忆网络的煤矿瓦斯浓度预测. 绥化学院学报. 2023(12): 156-160 . 百度学术
其他类型引用(11)
计量
- 文章访问数: 98
- HTML全文浏览量: 12
- PDF下载量: 15
- 被引次数: 20