矿山钻孔救援探测机器人研究进展

马宏伟, 马琨, 田海波

马宏伟,马琨,田海波.矿山钻孔救援探测机器人研究进展[J].工矿自动化,2019,45(2):24-29.. DOI: 10.13272/j.issn.1671-251x.2018010010
引用本文: 马宏伟,马琨,田海波.矿山钻孔救援探测机器人研究进展[J].工矿自动化,2019,45(2):24-29.. DOI: 10.13272/j.issn.1671-251x.2018010010
MA Hongwei, MA Kun, TIAN Haibo. Research progress of mine drilling rescue detection robots[J]. Journal of Mine Automation, 2019, 45(2): 24-29. DOI: 10.13272/j.issn.1671-251x.2018010010
Citation: MA Hongwei, MA Kun, TIAN Haibo. Research progress of mine drilling rescue detection robots[J]. Journal of Mine Automation, 2019, 45(2): 24-29. DOI: 10.13272/j.issn.1671-251x.2018010010

矿山钻孔救援探测机器人研究进展

基金项目: 

陕西省科技统筹创新工程计划项目(2013KTCL01-02)

陕西省自然科学基础研究计划项目(2015JM5235)

陕西省教育厅科学研究计划服务地方专项项目(16JF019)

详细信息
  • 中图分类号: TD77

Research progress of mine drilling rescue detection robots

  • 摘要: 分析了国内外钻孔救援技术、煤矿救援探测机器人及矿山钻孔救援探测机器人的研究现状,指出将煤矿救援探测机器人和管道机器人的研究成果与矿山钻孔救援的探测需求相结合,可以研制出满足要求的矿山钻孔救援探测机器人,提高井下灾后救援的成功率。从移动机构、导航、定位和路径规划、传感探测、通信和控制方式、能源供给、防爆性能等方面分析了矿山钻孔救援探测机器人的关键技术及其发展趋势,指出应围绕机器人的通过性、可靠性、轻量化、智能化等目标,在移动机构、能源供给和防爆性能等方面进行创新设计,提高传感检测范围和精度,研究未知、非结构化环境中的导航、定位及控制的智能算法,提高机器人的环境适应性。
    Abstract: The paper analyzed research status of rescue drilling technology, coal mine rescue detection robot and mine drilling rescue detection robot at home and abroad. It pointed out that using the research achievements of the coal mine rescue detection robot and pipeline robot combined with detection requirements of mine rescue drilling can develope the mine rescue drilling detection robot which meet the requirements of mine application, and improve rescue success rate of mine disaster. It also analyzed key technologies and development trend of mine rescue drilling detection robot in items of mobile mechanism, navigation, location and path planning, sensor detecting, communication and control mode, energy supply and explosion-proof performance. Meanwhile, it put forward that innovative design should be done on mobile mechanism, energy supply and explosion-proof performance around trafficability characteristic, reliability, lightweight, intelligentization of robot, so as to improve detection range and accuracy of the sensor; and intelligent algorithms of navigation, location and control in unknown and unstructured environment should be researched, so as to improve the environmental adaptability of the robot.
  • 期刊类型引用(3)

    1. 郭鑫,马行,穆春阳,张弘. 基于YOLOv8-SLA轻量化钢丝绳缺陷检测方法. 组合机床与自动化加工技术. 2025(03): 140-144 . 百度学术
    2. 田劼,白强,王兴军,孙钢钢,师彰文,李鹏博. 基于磁场模型的矿用钢丝绳检测信号特性试验研究. 煤炭科学技术. 2024(02): 279-291 . 百度学术
    3. 朱良,孙艺哲,谢波,刘艳蕊,井陆阳. 基于双树复小波包变换的钢丝绳断丝损伤信号特征信息提取研究. 仪表技术与传感器. 2023(05): 90-96 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 6
出版历程
  • 刊出日期:  2019-02-09

目录

    /

    返回文章
    返回