基于蚁群算法的井下救援路径优化方法

龚星宇1, 常心坦2, 贾澎涛1, 罗碧波

龚星宇,常心坦,贾澎涛,等.基于蚁群算法的井下救援路径优化方法[J].工矿自动化,2018,44(3):76-81.. DOI: 10.13272/j.issn.1671-251x.2017030023
引用本文: 龚星宇,常心坦,贾澎涛,等.基于蚁群算法的井下救援路径优化方法[J].工矿自动化,2018,44(3):76-81.. DOI: 10.13272/j.issn.1671-251x.2017030023
GONG Xingyu, CHANG Xintan, JIA Pengtao, LUO Bibo. Optimization method for mine rescue path based on ant colony algorithm[J]. Journal of Mine Automation, 2018, 44(3): 76-81. DOI: 10.13272/j.issn.1671-251x.2017030023
Citation: GONG Xingyu, CHANG Xintan, JIA Pengtao, LUO Bibo. Optimization method for mine rescue path based on ant colony algorithm[J]. Journal of Mine Automation, 2018, 44(3): 76-81. DOI: 10.13272/j.issn.1671-251x.2017030023

基于蚁群算法的井下救援路径优化方法

基金项目: 

西安市科技计划项目(2017079CG/RC042(XAKD001))

西安科技大学培育基金项目(201746)

详细信息
  • 中图分类号: TD77

Optimization method for mine rescue path based on ant colony algorithm

  • 摘要: 针对火灾背景下煤矿应急救援路径的优化问题,提出了一种基于蚁群算法的井下救援路径优化方法;建立了井下救援路径选择影响因素的层次结构模型,各影响因素按重要程度由高到低排列为CO浓度、瓦斯浓度、风量风速、巷道行走难度和人员综合素质;利用各影响因素的量化值更新蚁群算法信息素,寻找并保存最优路径。仿真结果表明,采用基于蚁群算法的井下救援路径优化方法能够选出最优路径,同时最优解具有较好的收敛性。
    Abstract: In view of optimization problem of emergency rescue path in underground fire condition, an optimization method for mine rescue path based on ant colony algorithm was proposed. Hierarchical structure model of influencing factors on mine rescue path selection was established, and according to degree of importance, the influencing factors were listed as follows: CO concentration, gas concentration, wind speed, roadway difficulty and personnel quality. The quantification of each factor is used to update pheromone of the ant colony algorithm to find and save the optimal path. The simulation results show that the optimal path can be selected by using the rescue path optimization method based on the ant colony algorithm, and the optimal solution has good convergence.
  • 期刊类型引用(3)

    1. 张兴志,张汉平,李明晓,聂琪,雷霆,阴树标. 钛粗精矿超声波提质除杂试验研究. 非金属矿. 2023(06): 65-69 . 百度学术
    2. 汪建新,程俊豪. 尾矿浆浓度与超声波衰减系数的关系研究. 工矿自动化. 2020(02): 45-49 . 本站查看
    3. 王方,雷金辉,陈焰,李朝辉,高波,张矿伟. 矿浆多参数在线检测系统设计. 有色金属(选矿部分). 2020(05): 107-111 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  125
  • HTML全文浏览量:  14
  • PDF下载量:  12
  • 被引次数: 9
出版历程
  • 刊出日期:  2018-03-09

目录

    /

    返回文章
    返回