综放工作面围岩控制与智能化放煤技术现状及展望

Current status and prospects of surrounding rock control and intelligent coal drawing technology in fully mechanized caving face

  • 摘要: 分析了厚及特厚煤层智能化综放工作面围岩控制技术与智能化放顶煤技术发展现状及存在的问题,从巷道围岩高效支护、工作面超前支护、坚硬特厚顶煤冒放性、液压支架位姿监测及智能化放顶煤5个方面提出了工程实际需求。针对综放工作面实现安全、高效、智能化开采存在的技术难题与工程需求,对综放工作面围岩控制技术、智能化放煤技术进行了研究:构建了坚硬特厚煤层顶煤悬臂梁力学模型,研发了提高顶煤冒放性及放出率关键技术,实现了坚硬特厚煤层超大采高综放开采;研发了单元式超前液压支架顶梁可旋转自复位装置,实现了液压支架顶梁根据巷道顶板倾斜角度自动旋转支护,有效提高了单元式超前液压支架对巷道顶底板的适应性;提出了采用巷道支护液压支架替代传统锚网支护结构的思路,具有支护效率高、成本低、节省工作面超前支护等优点;开发了基于立柱与尾梁千斤顶行程的综放液压支架支护姿态监测装置与算法,提高了液压支架支护姿态解算效率与精度;提出了基于透明地质模型、煤量监测装置与煤矸识别装置融合的智能放煤控制方法,可有效解决多夹矸层特厚顶煤智能化放煤技术难题。提出智能地质保障技术、机器视觉精准测量与智能感知技术、综放工作面设备智能精准自适应控制技术、综放工作面数字孪生技术等是智能化综放开采技术与装备的发展趋势。

     

    Abstract: This paper analyzes the current status and existing issues in the control technology of surrounding rock and intelligent top coal caving technology for thick and ultra-thick coal seams in fully mechanized caving faces. The study focuses on five aspects: efficient support of roadway surrounding rock, advanced support of working faces, the caving behavior of hard ultra-thick top coal, hydraulic support position monitoring, and intelligent top coal caving. To tackle the technical challenges and engineering demands for safe, efficient, and intelligent caving mining, research was conducted on surrounding rock control technology and intelligent coal caving technology. A mechanical model for cantilever beams of hard ultra-thick top coal was developed, and key technologies to enhance caving characteristics and extraction rate of top coal were created, facilitating large-height caving mining of hard ultra-thick coal seams. A modular advanced hydraulic support with a rotating self-resetting device was developed, allowing the hydraulic support's beam to automatically rotate based on the inclination angle of the roadway roof, significantly improving its adaptability to the roof and floor of roadway. The idea of replacing traditional bolt-mesh support with hydraulic supports for roadway support was proposed, offering high support efficiency, low cost, and savings on advanced support. A monitoring device and algorithm for the support posture of fully mechanized caving hydraulic supports based on the stroke of the jacks of columns and tail beams were developed, enhancing calculation efficiency and accuracy. An intelligent coal drawing control method integrating transparent geological models, coal volume monitoring devices, and coal and gangue identification devices was proposed, effectively addressing the challenges of intelligent coal drawing from ultra-thick top coal with multi-gangue layers. The paper concludes that trends in intelligent fully mechanized caving mining technology and equipment include intelligent geological assurance technology, precise measurement and intelligent sensing via machine vision, adaptive control technology for fully mechanized caving mining equipment, and digital twin technology.

     

/

返回文章
返回