Abstract:
Coal-rock-gas composite dynamic disaster is a major safety hazard in deep coal mining. Exploring its disaster mechanism and developing monitoring, early warning, prevention and control technologies are key to prevention and control. Therefore, the 'tetrahedral' theory for the prevention and control of coal-rock-gas composite dynamic disasters is proposed. The theory summarizes the research progress of coal-rock-gas composite dynamic disasters from four levels: disaster classification, disaster mechanism, disaster warning, and disaster prevention and control. The study summarizes the basis for classifying the type of composite dynamic hazard based on the main body of energy release, initial gas pressure, and loading conditions. The study reviews the research progress on composite dynamic disaster mechanisms at both theoretical and laboratory scales. It is found that stress paths, dynamic evolution of microcracks, and critical indicators of geological factors associated with coal and rock occurrence are key to the study of disaster mechanisms. The paper summarizes the research progress of composite dynamic disaster monitoring and early warning technology, with the main focus on early disaster precursor information identification, mid-term disaster precursor information collection, and integrated monitoring and early warning of later disasters. The study reveals the scientific connotation of integrated prevention and control technology for energy dissipation and disaster reduction in composite power disasters, as well as key technologies for multi-scale and multi-source prevention and control. On this basis, based on the features of disasters in the Lianghuai Mining Areas, intelligent identification and warning methods for composite dynamic disasters under deep strong dynamic load conditions and zoning collaborative prevention and control methods are proposed. Finally, based on current research progress, urgent issues in the study of coal-rock-gas composite dynamic disasters are proposed to help achieve safe, precise, and efficient mining of deep coal.