液压支架自动跟机动态规律研究

任怀伟, 张帅, 薛国华, 赵叔吉, 张玉良, 李建

任怀伟,张帅,薛国华,等. 液压支架自动跟机动态规律研究[J]. 工矿自动化,2023,49(9):47-54. DOI: 10.13272/j.issn.1671-251x.18133
引用本文: 任怀伟,张帅,薛国华,等. 液压支架自动跟机动态规律研究[J]. 工矿自动化,2023,49(9):47-54. DOI: 10.13272/j.issn.1671-251x.18133
REN Huaiwei, ZHANG Shuai, XUE Guohua, et al. Research on the dynamic law of automatic following of hydraulic support[J]. Journal of Mine Automation,2023,49(9):47-54. DOI: 10.13272/j.issn.1671-251x.18133
Citation: REN Huaiwei, ZHANG Shuai, XUE Guohua, et al. Research on the dynamic law of automatic following of hydraulic support[J]. Journal of Mine Automation,2023,49(9):47-54. DOI: 10.13272/j.issn.1671-251x.18133

液压支架自动跟机动态规律研究

基金项目: 国家自然科学基金面上项目(52274207);山东省重点研发计划(重大科技创新工程)项目(2020CXGC011502);中煤科工开采研究院有限公司科技创新基金项目(KCYJY-2021-ZD-01)。
详细信息
    作者简介:

    任怀伟(1980—),男,河北廊坊人,研究员,博士,博士研究生导师,研究方向为智能开采技术,E-mail:renhuaiwei@tdkcsj.com

  • 中图分类号: TD713

Research on the dynamic law of automatic following of hydraulic support

  • 摘要: 目前针对综采工作面液压支架自动跟机问题的研究集中在基于外部环境变量来控制液压支架动作,在工作面长时间运行中无法保持很好的效果。考虑外部环境的变化最终会反映到液压系统中,提出以液压系统压力特性预测液压支架跟机动作时间。以陕煤集团神木柠条塔矿业有限公司S1204工作面为工程背景,采用AMESim软件建立了单架液压系统模型和工作面液压系统模型,通过仿真分析得到移架和推溜同时动作时推移液压缸压力、行程等参数的动态变化规律,发现工作面液压支架自动跟机过程中推移液压缸进液口压力与拉架时间呈线性关系,说明可通过进液压力预测跟机动作时间。研发了工作面液压数据采集系统并安装于试验工作面,实时获取液压支架工作过程中推移液压缸进液口压力,并计算出对应的移架时间,得出二者具有强线性相关性,与仿真结果一致。采用线性拟合方法得出进液压力与拉架时间的关系式,实现了基于液压系统进液压力预测拉架时间,提高了自动跟机的准确性,减少了人工调节率。
    Abstract: Currently, research on the automatic following of hydraulic support in fully mechanized working faces focuses on controlling the movement of hydraulic support based on external environmental variables. It cannot maintain good results during long-term operation of the working face. Considering that changes of the external environment will ultimately be reflected in the hydraulic system, it is proposed to predict the following action time of hydraulic supports based on the pressure features of hydraulic system. Taking S1204 working face of Shaanxi Coal Mining Group Shenmu Ningtiaota Mining Co., Ltd. as the engineering background, a hydraulic system model for single support and a hydraulic system model for working face are established using AMESim software. Through simulation analysis, the dynamic change laws of parameters such as pressure and stroke of the pushing hydraulic cylinder during the simultaneous movement of advancing and sliding are obtained. It is found that the inlet pressure of pushing hydraulic cylinder is linearly related to the pulling time during the automatic following process of hydraulic support . It explains that the following action time can be predicted through the inlet pressure. The hydraulic data acquisition system for the working face is developed and installed on the experimental working face. The real-time pressure at the inlet of the pushing hydraulic cylinder during the working process of hydraulic support is obtained. The corresponding advancing time is calculated. It is found that the two have a strong linear correlation, which is consistent with the simulation results. The linear fitting method is used to obtain the relationship between the inlet pressure and the pulling time, achieving the prediction of pulling time based on hydraulic system pressure. It improves the accuracy of automatic following and reduceg reduceg the manual adjustment rate.
  • 图  1   柠条塔煤矿S1204工作面

    Figure  1.   S1204 working face in Ningtiaota Coal Mine

    图  2   支架液压系统

    Figure  2.   Support hydraulic system

    图  3   环形供液系统

    Figure  3.   Annual hydraulic system

    图  4   单架液压系统仿真模型

    Figure  4.   Support hydraulic system simulation model

    图  5   工作面液压系统仿真模型(局部)

    1−乳化液泵站组;2−卸荷阀;3−节流阀;4−推移液压缸;5−负载。

    Figure  5.   Hydraulic system simulation model of working face(local)

    图  6   液压系统模型仿真结果

    Figure  6.   Simulation results of hydraulic system model

    图  7   各试验组仿真结果数据散点图

    Figure  7.   The scatter diagram of test groups simulation results

    图  8   液压系统数据采集系统

    a−拉绳式行程传感器;b,c,d−压力传感器;e−接线盒;f−数据采集仪;g−数据采集仪内部开发板;h−交换机;i−上位机;红线−电源线;蓝线−传感器信号线;黑线−接线盒与数据采集仪通信总线;黄线−数据采集仪与上位机通信线。

    Figure  8.   Data acquisition system of hydraulic system

    图  9   工作面69号液压支架某次移架动作期间的状态数据曲线

    Figure  9.   The state data curve of No.69 hydraulic support in working face during a certain movement

    图  10   95%预测区间及拟合曲线

    Figure  10.   95% prediction interval and fitting curve

    表  1   ZY12000/22/45D型液压支架各液压缸参数

    Table  1   Parameters of ZY12000/22/45D hydraulic support cylinders

    液压缸 缸径/mm 杆径/mm 缸数 动作行程/mm
    立柱 400/300 380/260 2
    推移液压缸 200 140 1 960
    抬底液压缸 160 120 1 100
    护帮液压缸 125 85 2 300
    平衡液压缸 230 160 1
    侧推液压缸 80 60 4 200
    下载: 导出CSV

    表  2   供液系统各管路参数

    Table  2   Pipeline parameters of liquid supply system

    管路 长度/m 管径/mm
    进液管 回液管 进液管 回液管
    主管路(接机头) 300 300 63 75
    主管路(接机尾)运输巷段 300 300 63 75
    主管路(接机尾)刮板输送机槽段 400 400 50 63
    支架间管路 2.5 2.5 50 63
    下载: 导出CSV

    表  3   各试验组推移液压缸无杆腔压力和拉架时间

    Table  3   Rodless chamber pressure and pulling time of pushing cylinder in each test group

    仿真试验组
    (架号−有无推溜)
    无杆腔压力/MPa 拉架时间/s
    69−无 11.33 7.42
    69−有 11.21 7.64
    69,72−无 11.32 7.42
    69,72−有 10.95 7.95
    69,71,73−无 11.17 7.68
    69,71,73−有 10.75 8.81
    69,70−无 11.33 7.43
    69,70−有 11.01 7.95
    69,70,71−无 10.79 8.46
    69,70,71−有 10.19 10.47
    下载: 导出CSV

    表  4   拉架过程中的进液压力和时间

    Table  4   Inlet fluid pressure and time when pulling support

    序号 压力/MPa 时间/s 序号 压力/MPa 时间/s
    1 15.12 7.91 10 23.49 6.19
    2 15.25 9.76 11 24.1 5.74
    3 16.35 9.68 12 24.27 6.94
    4 18.9 6.33 13 26.2 5.54
    5 19.88 7.09 14 26.46 5.36
    6 20.65 6.28 15 26.48 4.98
    7 21.09 6.93 16 26.72 5.77
    8 21.17 6.76 17 26.76 5.55
    9 22.6 6.67 18 26.89 6.59
    下载: 导出CSV
  • [1] 王国法,庞义辉,任怀伟. 煤矿智能化开采模式与技术路径[J]. 采矿与岩层控制工程学报,2020,2(1):5-19.

    WANG Guofa,PANG Yihui,REN Huaiwei. Intelligent coal mining pattern and technological path[J]. Journal of Mining and Strata Control Engineering,2020,2(1):5-19.

    [2] 王国法,任怀伟,庞义辉,等. 煤矿智能化(初级阶段)技术体系研究与工程进展[J]. 煤炭科学技术,2020,48(7):1-27. DOI: 10.13199/j.cnki.cst.2020.07.001

    WANG Guofa,REN Huaiwei,PANG Yihui,et al. Research and engineering progress of intelligent coal mine technical system in early stages[J]. Coal Science and Technology,2020,48(7):1-27. DOI: 10.13199/j.cnki.cst.2020.07.001

    [3] 高有进,杨艺,常亚军,等. 综采工作面智能化关键技术现状与展望[J]. 煤炭科学技术,2021,49(8):1-22. DOI: 10.13199/j.cnki.cst.2021.08.001

    GAO Youjin,YANG Yi,CHANG Yajun,et al. Status and prospect of key technologies of intelligentization of fully-mechanized coal mining face[J]. Coal Science and Technology,2021,49(8):1-22. DOI: 10.13199/j.cnki.cst.2021.08.001

    [4] 高卫勇,张敏娟. 综采工作面液压支架跟机自动化工艺研究[J]. 工矿自动化,2018,44(11):14-17. DOI: 10.13272/j.issn.1671-251x.2018050040

    GAO Weiyong,ZHANG Minjuan. Research on following automation technology of hydraulic support on fully-mechanized coal mining face[J]. Industry and Mine Automation,2018,44(11):14-17. DOI: 10.13272/j.issn.1671-251x.2018050040

    [5] 任怀伟,张帅,张德生,等. 液压支架精准推移与快速跟机技术研究现状及发展趋势[J]. 工矿自动化,2022,48(8):1-9,15.

    REN Huaiwei,ZHANG Shuai,ZHANG Desheng,et al. Research status and development trend of hydraulic support precision pushing and fast follow-up technology[J]. Journal of Mine Automation,2022,48(8):1-9,15.

    [6] 张德生,祝琨,张赛,等. 综采工作面快速采煤技术现状及发展趋势[J]. 煤炭工程,2021,53(11):1-5.

    ZHANG Desheng, ZHU Kun, ZHANG Sai, et al. Present situation and prospect of rapid mining technology in fully-mechanized mining face[J]. Coal Engineering,2021,53(11):1-5.

    [7] 雷照源,姚一龙,李磊,等. 大采高智能化工作面液压支架自动跟机控制技术研究[J]. 煤炭科学技术,2019,47(7):194-199. DOI: 10.13199/j.cnki.cst.2019.07.025

    LEI Zhaoyuan,YAO Yilong,LI Lei,et al. Research on automatic follow-up control technology of hydraulic support in intelligent working face with large mining height[J]. Coal Science and Technology,2019,47(7):194-199. DOI: 10.13199/j.cnki.cst.2019.07.025

    [8] 刘清,韩秀琪,徐兰欣,等. 综采工作面采煤机和液压支架协同控制技术[J]. 工矿自动化,2020,46(5):43-48. DOI: 10.13272/j.issn.1671-251x.17520

    LIU Qing,HAN Xiuqi,XU Lanxin,et al. Cooperative control technology of shear and hydraulic support on fully-mechanized coal mining face[J]. Industry and Mine Automation,2020,46(5):43-48. DOI: 10.13272/j.issn.1671-251x.17520

    [9] 于波. 巴彦高勒煤矿采煤工作面自动化控制关键技术研究[J]. 煤炭科学技术,2021,49(增刊1):63-68.

    YU Bo. Study on the key technology of automatic control of coal mining face in Bayan'gole Coal Mine[J]. Coal Science and Technology,2021,49(S1):63-68.

    [10] 牛剑峰. 综采液压支架跟机自动化智能化控制系统研究[J]. 煤炭科学技术,2015,43(12):85-91. DOI: 10.13199/j.cnki.cst.2015.12.018

    NIU Jianfeng. Study on automatic and intelligent following control system of hydraulic powered support in fully-mechanized coal mining face[J]. Coal Science and Technology,2015,43(12):85-91. DOI: 10.13199/j.cnki.cst.2015.12.018

    [11] 李昊,柴保明,翟大磊. 基于液压支架自主跟机逻辑的移架时长参数设定及动态优化[J]. 煤矿安全,2019,50(9):136-139. DOI: 10.13347/j.cnki.mkaq.2019.09.035

    LI Hao,CHAI Baoming,ZHAI Dalei. Setting and dynamic optimization of supports shifting time parameters based on hydraulic support following machine logic autonomously[J]. Safety in Coal Mines,2019,50(9):136-139. DOI: 10.13347/j.cnki.mkaq.2019.09.035

    [12] 王虹,尤秀松,李首滨,等. 基于遗传算法与BP神经网络的支架跟机自动化研究[J]. 煤炭科学技术,2021,49(1):272-277. DOI: 10.13199/j.cnki.cst.2021.01.024

    WANG Hong,YOU Xiusong,LI Shoubin,et al. Research on automation of support based on genetic algorithm and BP neural network[J]. Coal Science and Technology,2021,49(1):272-277. DOI: 10.13199/j.cnki.cst.2021.01.024

    [13] 王国法,张良,李首滨,等. 煤矿无人化智能开采系统理论与技术研发进展[J]. 煤炭学报,2023,48(1):34-53. DOI: 10.13225/j.cnki.jccs.2022.1536

    WANG Guofa,ZHANG Liang,LI Shoubin,et al. Progresses in theory and technological development of unmanned smart mining system[J]. Journal of China Coal Society,2023,48(1):34-53. DOI: 10.13225/j.cnki.jccs.2022.1536

    [14] 王峰. 液压支架精确推移控制方案研究与应用[J]. 工矿自动化,2017,43(5):6-9. DOI: 10.13272/j.issn.1671-251x.2017.05.002

    WANG Feng. Research of precise pushing control scheme for hydraulic support and its application[J]. Industry and Mine Automation,2017,43(5):6-9. DOI: 10.13272/j.issn.1671-251x.2017.05.002

    [15] 牛剑峰. 受汽车无人驾驶启发的液压支架智能协同控制[J]. 工矿自动化,2020,46(5):54-56,75. DOI: 10.13272/j.issn.1671-251x.17569

    NIU Jianfeng. Intelligent cooperative control of hydraulic support inspired by driveless car[J]. Industry and Mine Automation,2020,46(5):54-56,75. DOI: 10.13272/j.issn.1671-251x.17569

    [16]

    REN Huaiwei,ZHANG Desheng,GONG Shixin,et al. Dynamic impact experiment and response characteristics analysis for 1∶2 reduced-scale model of hydraulic support[J]. International Journal of Mining Science and Technology,2021,31(3):347-356. DOI: 10.1016/j.ijmst.2021.03.004

    [17]

    GE Xing,XIE Jiacheng,WANG Xuewen,et al. A virtual adjustment method and experimental study of the support attitude of hydraulic support groups in propulsion state[J]. Measurement,2020,158(1). DOI: 10.1016/j.measurement.2020.107743.

    [18] 王巍,武守彦. 基于AMEsim的液压支架快速移架速度分析[J]. 煤矿机械,2012,33(6):113-115. DOI: 10.3969/j.issn.1003-0794.2012.06.049

    WANG Wei,WU Shouyan. Analysis of velocity of rapidly moving hydraulic support based on AMEsim[J]. Coal Mine Machinery,2012,33(6):113-115. DOI: 10.3969/j.issn.1003-0794.2012.06.049

    [19]

    LI Haining,DENG Dai'an. Research on influence factors of hydraulic support moving velocity in coal mining based on AMESim[J]. Advanced Materials Research,2014,1014:180-184. DOI: 10.4028/www.scientific.net/AMR.1014.180

    [20] 周如林,乔子石,孟令宇. 综采工作面液压支架立柱快速供回液方案研究[J]. 工矿自动化,2021,47(11):74-80. DOI: 10.13272/j.issn.1671-251x.2021080006

    ZHOU Rulin,QIAO Zishi,MENG Lingyu. Study on the fast fluid supply and return scheme of hydraulic support column in fully mechanized working face[J]. Industry and Mine Automation,2021,47(11):74-80. DOI: 10.13272/j.issn.1671-251x.2021080006

    [21] 邓峣,蒋德富,周建江,等. 基于多项式拟合的宽带NLFM数字分数时延波形产生方法[J]. 现代雷达,2023,45(2):67-74. DOI: 10.16592/j.cnki.1004-7859.2023.02.011

    DENG Yao,JIANG Defu,ZHOU Jianjiang,et al. Broadband NLFM digital fractional delay waveform generation method based on polynomial fitting[J]. Modern Radar,2023,45(2):67-74. DOI: 10.16592/j.cnki.1004-7859.2023.02.011

  • 期刊类型引用(12)

    1. 庞义辉,关书方,姜志刚,白云,李鹏. 综放工作面围岩控制与智能化放煤技术现状及展望. 工矿自动化. 2024(09): 20-27 . 本站查看
    2. 杨艺,王圣文,崔科飞,费树岷. 基于模糊深度Q网络的放煤智能决策方法. 工矿自动化. 2023(04): 78-85 . 本站查看
    3. 杨艺,高阳,罗开成,王科平,费树岷. 基于YADE的综放工作面进刀放煤三维仿真. 煤矿安全. 2022(01): 167-173 . 百度学术
    4. 刘军锋,高亮亮,尹春雷. 智能放煤技术在某矿综放工作面的研究与应用. 煤炭技术. 2022(02): 58-60 . 百度学术
    5. 罗开成,高阳,杨艺,常亚军,袁瑞甫. 基于均值偏差奖赏函数的放煤口控制策略研究. 煤炭工程. 2022(09): 105-111 . 百度学术
    6. 杨艺,李庆元,李化敏,李东印,杨延麟,费树岷. 基于批量式强化学习的群组放煤智能决策研究. 煤炭科学技术. 2022(10): 188-197 . 百度学术
    7. 聂天文,韩金博. 倾斜特厚煤层工作面初次放顶方案设计. 陕西煤炭. 2021(03): 101-105 . 百度学术
    8. 王启鑫. 智能化放顶煤开采的精确放煤控制技术. 当代化工研究. 2021(14): 67-68 . 百度学术
    9. 高有进,杨艺,常亚军,张幸福,李国威,连东辉,崔科飞,武学艺,魏宗杰. 综采工作面智能化关键技术现状与展望. 煤炭科学技术. 2021(08): 1-22 . 百度学术
    10. 李伟. 综放开采智能化控制系统研发与应用. 煤炭科学技术. 2021(10): 128-135 . 百度学术
    11. 张学亮,刘清,郎瑞峰,邵斌,吴少伟. 厚煤层智能放煤工艺及精准控制关键技术研究. 煤炭工程. 2020(09): 1-6 . 百度学术
    12. 李长营. 综采放顶煤工艺参数仿真优化. 当代化工研究. 2020(18): 144-145 . 百度学术

    其他类型引用(5)

图(10)  /  表(4)
计量
  • 文章访问数:  1061
  • HTML全文浏览量:  120
  • PDF下载量:  49
  • 被引次数: 17
出版历程
  • 收稿日期:  2023-06-09
  • 修回日期:  2023-08-15
  • 网络出版日期:  2023-09-27
  • 刊出日期:  2023-09-27

目录

    /

    返回文章
    返回