智能矿山低代码工业物联网平台设计

Design of intelligent mine low code industrial IoT platform

  • 摘要: 随着智能矿山建设的稳步推进和煤炭企业数字化转型的加速实施,煤矿企业用户业务数字化应用需求呈指数式增长,对业务应用开发效率提出更高要求,传统的煤炭行业应用系统开发模式过度依赖专业厂家,实施周期长、实施成本高、资源重复利用率低,难以满足煤矿用户对快速开发业务应用的管理要求。针对上述问题,提出了一种采用“模型驱动”开发模式的智能矿山低代码工业物联网平台设计方案。基于微服务技术设计了包含数据采集层、数据处理层、数据存储层、数据发布层、人机交互与应用层的平台架构,在每个层级运行平台通过解析引擎解析开发平台配置对应的功能;通过设计数据编码与主数据规范、平台内部数据交互规范、平台接口与服务等构建统一技术体系,实现了煤矿作业现场各类物联网监控对象的统一监管;通过开发低代码组件工具箱,将原本在煤矿各类监控系统软件中需要通过定制化开发的系列通用功能和业务逻辑进行统一封装,形成可直接复用的组件,使其可适应煤矿不同类型监控系统应用,为用户提供一个通过拖拽组件和配置参数等方式即可完成智能矿山应用软件开发的可视化开发环境。应用结果表明,该平台可为煤矿监控类系统提供快速开发平台,满足煤矿用户日常提出的紧急定制化任务开发需求。

     

    Abstract: With the steady progress of intelligent mine construction and the acceleration of the implementation of digital transformation of coal enterprises, the demand for digital business applications of coal mine users is growing exponentially. This puts forward higher requirements for the efficiency of business application development. The traditional development model of application systems in the coal industry relies excessively on professional manufacturers. It has problems, such as long implementation cycles, high implementation costs and low resource reuse rates. It is difficult to meet the management requirements of coal mine users for rapid development of business applications. To solve the above problems, a design scheme of intelligent mine low code industrial IoT platform using the "model driven" development mode is proposed. Based on microservices technology, the platform architecture including the data acquisition layer, data processing layer, data storage layer, data release layer, human-computer interaction and application layer is designed. The operation platform at each level resolves the corresponding functions of the development platform configuration through a resolution engine. By designing data encoding and master data specifications, platform internal data interaction specifications, platform interfaces and services, a unified technical system has been established. The unified supervision of various IoT monitoring objects on coal mine operation sites is achieved. By developing a low code component toolbox, a series of common functions and business logic that originally needed to be customized and developed in various monitoring system software for coal mines are uniformly encapsulated. It forms directly reusable components that can adapt to different types of monitoring system applications in coal mines. This provides users with a visual development environment for intelligent mining application software development by dragging and dropping components and configuring parameters. The application results indicate that this platform can provide a rapid development platform for coal mine monitoring systems, meeting the daily needs of coal mine users for emergency customized task development.

     

/

返回文章
返回