基于钻孔救援的UWB雷达波传输衰减研究及展望

Research and prospect of UWB radar wave transmission attenuation based on borehole rescue

  • 摘要: 快速精准地获取井下受灾人员位置是钻孔救援前期生命信息探测的关键问题。针对在垂直钻孔救援过程中,由于探测区域巷道坍塌或终孔位置偏移,无法快速准确地获取被困人员位置,耽误救援的黄金时间,影响人员生命安全的问题,通过开展UWB雷达波传输衰减研究,为现场救援指挥人员快速制定救援方案。分析了UWB雷达波应用于矿山钻孔救援的现状和需求,并结合矿山钻孔救援背景,指出UWB雷达波传输衰减规律,从介质的各向同异性分析了介质的特性参数对雷达波传输衰减的影响;从介电常数、电导率、磁导率和时空变化4个方面分析了介质的电性参数对雷达波传输衰减的影响;从雷达频率和极化2个方面分析了雷达特征参数对雷达波传输衰减的影响。根据上述分析,指出目前对UWB雷达波同时穿透煤岩体等各向异性介质的研究和介质传播衰减机理研究较少;在井下复杂多变或模拟受灾后环境的UWB雷达波传输衰减理论与实验较少,相关规律总结较少;UWB雷达波关键参数与影响因素之间的映射关系数据库尚未完善。并给出未来需研究的关键技术:① 对煤岩体等各向异性介质在宏观与微观上进行研究;② 搭建灾变环境条件下雷达波传输衰减实验模拟系统;③ 增加灾变后非结构环境下UWB雷达信号传播特性的研究与信道建模数值模拟。

     

    Abstract: Obtaining the position of underground trapped personnel quickly and precisely is a key issue for life information detection in the early stage of borehole rescue. In the process of vertical drilling and rescue, due to the collapse of the roadway in the detection area or the displacement of the final hole position, it is impossible to obtain the position of the trapped personnel quickly and accurately. It delays the golden time of rescue and affects the safety of personnel. Through conducting a UWB radar wave transmission attenuation study, a rescue plan can be quickly formulated for on-site rescue commanders. This paper analyzes the current situation and demand of UWB radar wave application in mine borehold rescue. Combined with the background of mine borehold rescue, it is pointed out the attenuation law of UWB radar wave transmission. The study analyzes the influence of the characteristic parameters of the medium on the attenuation of radar wave transmission from the perspective of anisotropy of the medium. The influence of dielectric parameters on radar wave transmission attenuation is analyzed from four aspects: dielectric constant, conductivity, magnetic permeability and spatiotemporal variation. The influence of radar characteristic parameters on radar wave transmission attenuation is analyzed from two aspects: radar frequency and polarization. Based on the above analysis, it is pointed out that there are few studies on the simultaneous penetration of UWB radar waves through anisotropic media such as coal and rock masses and the mechanism of media propagation and attenuation. There are few theories and experiments on UWB radar wave transmission attenuation in complex and changeable underground or simulating disaster environments. And there are few summaries of relevant laws. The mapping relationship database between key parameters and influencing factors of UWB radar waves is not yet complete. The key technologies to be studied in the future are given as follows. It is suggested to conduct research on anisotropic media such as coal and rock masses at both macro and micro levels. It is suggested to establish an experimental simulation system for radar wave transmission attenuation under catastrophic environmental conditions. It is suggested to add research on UWB radar signal propagation characteristics and channel modeling numerical simulation in unstructured environments after disasters.

     

/

返回文章
返回