Abstract:
The paper analyzes the image characteristics of the thrown coal and rock when rock burst and coal and gas outburst occur. ① The coal and rock thrown out during rock burst and coal and gas outburst are mainly black, but the underground equipment of the coal mine is generally not black. Therefore, nonblack mining equipment can be used as the background and color cameras can be used to identify coal and rock. ② The normal coal falling speed, the moving speed of shearer, roadheader, and the moving speed of underground personnel and vehicles are far less than the speed of coal and rock thrown out in the event of rock burst and coal and gas outburst. Therefore, according to the speed characteristics, the interference from normal coal falling, movement of equipment such as shearer and roadheader, and movement of underground personnel and vehicles can be eliminated. ③ The explosion of gas and coal dust will also cause the objects in the roadway to have a high speed in a short time, accompanied by high brightness. But the rock burst and coal and gas outburst will not produce high brightness. Therefore, according to the average image brightness, the interference of gas and coal dust explosion can be eliminated. The paper proposes a color camera set method. The camera of the heading face should be set at the roof of the heading roadway or near the roof on both sides of the heading roadway. The camera of the working face should be set on the top of the hydraulic support. The paper puts forward a coal mine rock burst and coal and gas outburst perception alarm method based on color image. ① The color camera with fill light shall be set at the roof of the heading roadway or near the roof on both sides of the heading roadway, and at the top of the hydraulic support of the working face. The nonblack mining equipment is used as the background. ② The method monitors and identifies whether the color of the color image has changed greatly. ③ If the image color changes significantly, the average brightness of the image is identified, otherwise the monitoring of the identified image color change continues. ④ If the average brightness of the image is less than the set brightness threshold, the movement speed of the object causing a large change in the image color is identified, otherwise the monitoring of the identified image color change continues. ⑤ If the movement speed of the object is greater than the set speed threshold value, the methane concentration in the monitoring area is identified, otherwise the monitoring of the identified image color change continues. ⑥ If the methane concentration rises rapidly or reaches the alarm value, the coal and gas outburst alarm will be given. Otherwise, the rock burst alarm will be given. The method has the advantages of non-contact, wide monitoring range, low cost, convenient use and maintenance.