煤矿救援机器人机械臂轨迹规划算法研究

韩涛, 李静, 黄友锐, 徐善永, 许家昌

韩涛, 李静, 黄友锐, 徐善永, 许家昌. 煤矿救援机器人机械臂轨迹规划算法研究[J]. 工矿自动化, 2021, 47(11): 45-52. DOI: 10.13272/j.issn.1671-251x.17844
引用本文: 韩涛, 李静, 黄友锐, 徐善永, 许家昌. 煤矿救援机器人机械臂轨迹规划算法研究[J]. 工矿自动化, 2021, 47(11): 45-52. DOI: 10.13272/j.issn.1671-251x.17844
HAN Tao, LI Jing, HUANG Yourui, XU Shanyong, XU Jiachang. Research on trajectory planning algorithm of manipulator arm of coal mine rescue robot[J]. Journal of Mine Automation, 2021, 47(11): 45-52. DOI: 10.13272/j.issn.1671-251x.17844
Citation: HAN Tao, LI Jing, HUANG Yourui, XU Shanyong, XU Jiachang. Research on trajectory planning algorithm of manipulator arm of coal mine rescue robot[J]. Journal of Mine Automation, 2021, 47(11): 45-52. DOI: 10.13272/j.issn.1671-251x.17844

煤矿救援机器人机械臂轨迹规划算法研究

基金项目: 

安徽省重点研究与开发计划项目(202104g01020012);安徽省教育厅自然科学研究重点项目(KJ2019A0110)。

详细信息
    作者简介:

    韩涛(1984-),男,安徽淮南人,高级实验师,硕士,研究方向为计算机视觉和智能控制等,E-mail:than@aust.edu.cn。

  • 中图分类号: TD774

Research on trajectory planning algorithm of manipulator arm of coal mine rescue robot

  • 摘要: 针对煤矿井下复杂环境中救援机器人机械臂轨迹规划不合理、规划方法收敛速度慢等问题,提出了一种基于融合杜鹃搜索的灰狼优化(CS-GWO)算法的煤矿救援机器人机械臂轨迹规划算法。以五次多项式插值为基本轨迹规划方法,在机械臂关节空间进行轨迹规划,通过CS-GWO算法对得到的轨迹进行优化,实现机械臂时间-能量最优轨迹规划。CS-GWO算法在灰狼优化(GWO)算法的位置更新方式中融入杜鹃搜索(CS)算法的2次扰动过程,结合CS算法的莱维飞行模式和鸟巢位置随机更新的特点,使得狼群在向猎物逼近的过程中能够随机跳出局部搜索区域,扩大了搜索范围,避免算法陷入局部最优解,增强了GWO算法的全局搜索能力。Matlab仿真结果表明,CS-GWO算法能够有效提高CS算法的收敛速度和GWO算法的全局搜索能力,其稳定性更好,整体性能较优;利用机械臂轨迹规划算法可得到一条时间-能量最优轨迹,各关节角位移、角速度、角加速度曲线均光滑、连续,有效解决了煤矿井下复杂环境中救援机器人机械臂最优轨迹规划问题。
    Abstract: In order to solve the problems of unreasonable trajectory planning of rescue robot manipulator arm and slow convergence speed of the planning method in the complex environment of coal mines, a trajectory planning algorithm of manipulator arm of coal mine rescue robot based on grey wolf optimization with cuckoo search(CS-GWO)is proposed.With the quintic polynomial interpolation as the basic trajectory planning method, the trajectory planning is carried out in the manipulator arm joint space, and the obtained trajectory is optimized by the CS-GWO algorithm to realize the time-energy optimal trajectory planning of the manipulator arm.The CS-GWO algorithm integrates the two perturbation process of the cuckoo search(CS)algorithm into the position update method of the grey wolf optimization(GWO)algorithm.Combined with the Lévy flight mode of the CS algorithm and the characteristics of the random update of the nest position, the algorithm enables the wolves to randomly jump out of the local search area in the process of approaching the prey, expands the search range, avoids the algorithm from falling into the local optimal solution, and enhances the GWO algorithm's global search capability.Matlab simulation results show that the CS-GWO algorithm can improve the convergence speed of the CS algorithm and the global search capability of the GWO algorithm effectively, with better stability and better overall performance.The use of the manipulator arm trajectory planning algorithm can obtain a time-energy optimal trajectory.The curves of angular displacement, angular velocity, and angular acceleration of each joint are smooth and continuous, which solves the optimal trajectory planning problem of manipulator arm of rescue robot in the complex environment of coal mines effectively.
  • [1] 王路明,常振兴.机器人技术在煤矿中的应用及发展趋势[J].煤炭技术,2021,40(4):151-153.

    WANG Luming,CHANG Zhenxing.Application and development trend of robot technology in coal mine[J].Coal Technology,2021,40(4):151-153.

    [2] 徐伟锋,金向阳.煤矿机器人轨迹跟踪自抗扰控制研究[J].煤矿机械,2021,42(3):57-59.

    XU Weifeng,JIN Xiangyang.Research on active disturbance rejection control for trajectory tracking of coal mine robot[J].Coal Mine Machinery,2021,42(3):57-59.

    [3] 牛启臣,张弓,张功学,等.多机器人轨迹规划研究综述及发展趋势[J].机床与液压,2021,49(12):184-189.

    NIU Qichen,ZHANG Gong,ZHANG Gongxue,et al.Review and development trend of multi-robot trajectory planning[J].Machine Tool & Hydraulics,2021,49(12):184-189.

    [4] 赵相博,潘松峰,赵加龙.搬运机器人关节空间轨迹规划研究[J].自动化技术与应用,2020,39(11):86-90.

    ZHAO Xiangbo,PAN Songfeng,ZHAO Jialong.Research on joint space trajectory planning of handling robot[J].Techniques of Automation and Applications,2020,39(11):86-90.

    [5]

    LI Y,WANG J,JI Y.Function analysis of industrial robot under cubic polynomial interpolation in animation simulation environment[J].International Journal of Interactive Multimedia and Artificial Intelligence,2020,6(4):105.

    [6]

    HU J,SUN Y,LI G,et al.Trajectory planning algorithm and simulation of 6-DOF manipulator[J].International Journal of Wireless & Mobile Computing,2018,14(2):138-148.

    [7]

    DU Q J,ZHANG X Y,ZHAI S L.Humanoid robot arm kinematics modeling and motion planning[J].Applied Mechanics & Materials,2014,644-650:247-250.

    [8]

    YUE M,WU X,GUO L,et al.Quintic polynomial-based obstacle avoidancetrajectory planning and tracking control framework for tractor-trailer system[J].International Journal of Control Automation and Systems,2019,17(3):2634-2646.

    [9] 周晟.基于改进量子遗传算法的机械臂轨迹优化[J].组合机床与自动化加工技术,2021(6):33-37.

    ZHOU Sheng.Manipulator based on improved quantum genetic algorithm trajectory optimization[J].Modular Machine Tool & Automatic Manufacturing Technique,2021(6):33-37.

    [10]

    LIU Y,GUO C,WENG Y.Online time-optimal trajectory planning for robotic manipulators using adaptive elitegenetic algorithm with singularity avoidance[J].IEEE Access,2019,7:146301-146308.

    [11] 何建成,李林升,林国湘.基于多目标粒子群算法工业机器人最优轨迹规划[J].制造业自动化,2021,43(2):57-62.

    HE Jiancheng,LI Linsheng,LIN Guoxiang.The optimal planning of industrial robot trajectories based on MOPSO[J].Manufacturing Automation,2021,43(2):57-62.

    [12]

    GAO F,WU P.A trajectory planning algorithm for medical manipulators based on adaptive particle swarm optimization and fuzzy neural network[J].Journal Européen des Systèmes Automatisés,2020,53(3):429-435.

    [13] 浦玉学,舒鹏飞,蒋祺,等.工业机器人时间-能量最优轨迹规划[J].计算机工程与应用,2019,55(22):86-90.

    PU Yuxue,SHU Pengfei,JIANG Qi,et al.Time-energy optimum trajectory planning for industrial robot[J].Computer Engineering and Applications,2019,55(22):86-90.

    [14] 李国洪,王远亮.基于B样条和改进遗传算法的机器人时间最优轨迹规划[J].计算机应用与软件,2020,37(11):215-223.

    LI Guohong,WANG Yuanliang.Time-optimal trajectory planning of robots based on B-spline and improved genetic algorithm[J].Computer Applications and Software,2020,37(11):215-223.

    [15] 邓伟,张其万,刘平,等.基于双种群遗传混沌优化算法的最优时间轨迹规划[J].计算机集成制造系统,2018,24(1):101-106.

    DENG Wei,ZHANG Qiwan,LIU Ping,et al.Optimal time trajectory planning based on dual population genetic and chaotic optimization algorithm[J].Computer Integrated Manufacturing Systems,2018,24(1):101-106.

    [16]

    KHOUKHI A,BARON L,BALAZINSKI M,et al.A hierarchical neuro-fuzzy system to near optimal time trajectory planning of redundant manipulators[J].Engineering Applications of Artificial Intelligence,2008,21(7):974-984.

    [17]

    HSU Y L,HUANG M S,FUNG R F.Energy-saving trajectory planning for a toggle mechanism driven by a PMSM[J].IFAC Proceedings Volumes,2013,46(5):628-635.

计量
  • 文章访问数:  151
  • HTML全文浏览量:  31
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 修回日期:  2021-10-27
  • 刊出日期:  2021-11-19

目录

    /

    返回文章
    返回