矿山语义物联网自动语义标注方法

Automatic semantic annotation method for mine Semantic Web of things

  • 摘要: 针对目前矿山领域异构数据融合时先验知识获取困难、物联网本体库实时性差、实例对象数据手动标注方式效率较低等问题,提出了一种矿山语义物联网自动语义标注方法。给出了传感数据语义化处理框架:一方面,确定本体的专业领域和范畴,通过重用流注释本体(SAO)构建领域本体,作为驱动语义标注的基础;另一方面,使用机器学习方法对感知数据流进行特征提取与数据分析,从海量数据中挖掘出概念间的关系;通过数据挖掘知识来驱动本体的更新与完善,实现本体的动态更新、拓展与更精确的语义标注,增强机器的理解力。以矿井提升系统主轴故障为例阐述从本体到实例化的语义标注过程:结合领域专家知识及本体重用,采用“七步法”建立矿井提升系统主传动故障本体;为了加强实例数据属性描述的准确性,使用主成分分析法(PCA)与K-means聚类方法对数据集进行降维和分组,提取出数据属性与概念的关系;通过基于语义Web的规则语言(SWRL)标注具体先行条件与后续概念的关系,优化领域本体。实验结果表明:在本体实例化过程中,可利用机器学习技术从传感数据中自动提取概念,实现传感数据的自动语义标注。

     

    Abstract: In view of problem of difficulties in obtaining prior knowledge during fusion of heterogeneous data in mining field, poor real-time performance of IoT ontology database,and low efficiency of manual annotation of instance object data, an automatic semantic annotation method for mine Semantic Web of things was proposed. Framework of semantic processing of sensory data was given: on the one hand, professional domain and category of ontology are determined, and the domain ontology is constructed by reusing SAO as the basis for driving semantic annotation; on the other hand, machine learning method is used for feature extraction and data analysis of perceptual data stream, and relationship between concepts is mined from massive data; finally, data mining knowledge is used to drive the update and improvement of the ontology, so as to realize dynamic update, expansion and more accurate semantic annotation of the ontology, and enhance the machine's understanding. Spindle fault of mine hoisting system is used as an example to explain the process of semantic annotation from ontology to instantiation: combining the domain expert's knowledge and ontology reuse, the “seven-step method” is used to establish fault ontology of the main drive of mine hoisting system; in order to enhance the accuracy of the instance data attribute description, PCA dimensionality reduction method and K-means clustering method are used to group the data set to extract the relationship between data attributes and concepts;finally, the relationship between specific preconditions and subsequent concepts is marked by SWRL to optimize the domain ontology. The experimental results show that in the process of ontology instantiation, machine learning technology can be used to automatically extract concepts from sensing data and realize automatic semantic annotation of sensing data.

     

/

返回文章
返回